Боцманок Брач Владислав Альбертович: другие произведения.

Медицинский реактор.

Журнал "Самиздат": [Регистрация] [Найти] [Рейтинги] [Обсуждения] [Новинки] [Обзоры] [Помощь]
Peклaмa:
Литературные конкурсы на Litnet. Переходи и читай!
Конкурсы романов на Author.Today

Конкурс фантрассказа Блэк-Джек-21
Поиск утраченного смысла. Загадка Лукоморья
Peклaмa
 Ваша оценка:
  • Аннотация:
    А мы не только трубки чёрта раскуриваем!


   Медицинский реактор. Простое решение проблемы.
   Нейтронная терапия онкологических заболеваний предъявляет специфические
   требования к физическим параметрам пучков нейтронов (см. табл. 1). В настоящее
   время для нейтронной терапии используют многоцелевые исследовательские
   реакторы, приспосабливая к их возможностям медицинские пучки нейтронов.
   Представляется целесообразным создание специализированного медицинского псевдо реактора с пучком нейтронов заданных параметров как специального медицинского
   инструмента, расположенного непосредственно в клинике.
   Требования к специализированной реакторной установке достаточно очевидны:
   дешевизна, внутренняя безопасность и отсутствие возможности использования
   делящегося материала в качестве сырья для ядерного оружия.
   Эти требования реализуются при условии, если мощность реактора W и масса
   топлива m минимальны, а поток нейтронов F, требуемых параметров, максимальный,
   т.е. конструкция реактора и топливо должны быть такими, чтобы отношение
   F/W было наибольшим.
   Реактор должен работать в старт стопном режиме. Две основные функции
   установки - выдавать пучок нейтронов заданных параметров и производить радиоактивные препараты для целей диагностики. Желательно иметь минимальный дополнительный эксплутационный персонал.
   Для иллюстрации требований к характеристикам медицинских пучков рассмотрим
   один из вариантов нейтронной терапии - нейтронозахватный. Не вдаваясь в
   медицинские подробности методов лечения, отметим сам принцип. В ткань опухоли
   вводится фармацевтический препарат, содержащий изотоп B10, который имеет высокое
   сечение поглощения нейтронов, затем опухоль облучается нейтронами. При поглощении
   нейтрона в реакции (n,?) образуются две короткопробежные альфа частицы, и энергия, выделяемая в реакции, поглощается, локально воздействуя на опухолевую ткань.
   Оптимальная энергия нейтронов для нейтронозахватной терапии лежит в интервале от 1 до
   10^4 эВ. При таких энергиях нейтронов нет чрезмерного облучения кожных покровов,
   что неизбежно в случае тепловых нейтронов. Кроме того, значительная часть нейтронов, диффундируя в район опухоли, успевает замедлиться и с большой вероятностью вступает
   в реакцию (n,?).
   Желательно иметь малую долю быстрых нейтронов. Доза, создаваемая быстрыми нейтронами в результате упругого рассеяния на ядрах водорода, является фоновой и реализуется в здоровых тканях. Интенсивность пучка нейтронов в выбранном интервале энергий должна быть не менее 10^9 н/см^2 * с, с тем, чтобы время облучения пациента не превышало 1 часа.
   Таблица 1
   Основные требования к медицинскому реактору как нейтронному источнику для нейтрон - захватной терапии
   N# Название Значение
   1. Плотность потока эпитепловых нейтронов F, н/(см^2*сек) >1*10^9
   2. Доза быстрых нейтронов на эпитепловой нейтрон Гр*см^2/н <2*10^(-13)
   3. Доза гамма - излучения на эпитепловой нейтрон Гр*см^2/н <2*10^(-13)
   4. Отношение тока к потоку J/F > 0,7
  
   Конструкции фильтра и коллиматора пучка нейтронов должны обеспечить минимально возможную дозу гамма - излучения и дозу, создаваемую быстрыми нейтронами. Основные требования к пучку нейронов реакторной установки, выработанные медицинским сообществом, представлены в табл.1.
   Во многих современных клиниках и онкологических центрах используются в лечебном процессе современные линейные ускорители электронов. Это компактные (ускорение происходит на стоячей волне),надёжные устройства, обладающие достаточно силой
   тока при ускорении на энергию 20 - 40 МэВ. Пример: ЛУЭВ 20М производства НИИЭФА.
   Предлагаемый реактор будет состоять из основных трёх частей:
   ускоритель электронов;
   комбинированная мишень, производящая нейтроны;
   подкритическая сборка на природном уране с коллиматором и фильтром.
  
   Физическая суть предлагаемого явления состоит в следующем: Поток разогнанных до энергии 20 МэВ электронов тормозится в комбинированной мишени с наличием природного урана, создаёт тормозное гамма - излучение с непрерывным спектром начиная с 20 МэВ и возрастанием интенсивности в области более низких энергий. Фотоядерная реакция гамма излучения происходит с ураном 238 и создаёт поток нейтронов со сгущением в области Гигантского резонанса энергией. Электроны, попадая в мишень, часть своей энергии тратят на генерирование гамма и рентгеновского спектра излучения, часть на ионизацию. Отношение энергии идущей на рентген к энергии на ионизацию, равно X=Z*E/800.
В случае урана и 20
- МэВ ных электронов X = 92*20/800 = 2,3 ,то есть на гамма и рентген излучение идет 69% мощности потока ускоренных электронов, попавших в мишень. При энергии электрона от единиц до десятков МэВ пробег его в мишени из тяжелых атомов (уран, свинец, вольфрам) порядка миллиметров, а пробег гамма - кванта тормозного излучения той же энергии порядка сантиметров. Поэтому, при попадании электронов на тонкую мишень из тяжелых атомов, образуется тормозной гамма и рентгеновский спектр с граничной энергией определяемой равенством энергий гамма - кванта и электрона. Для изотопа урана 238 фотоны с энергией выше энергии связи 7,4 МэВ вступают в реакции (gamma,n) ,а в случае превышения порога деления 7 МэВ и в реакции фотоделения. В качестве мишени можно использовать просто слой урана, или тонкий (1 мм) слой вольфрама плюс толстый слой бериллия. Реакция Be9(gamma,n)He4+He4+n,порог- 1,67 Mev.
Преимущество вольфрам - бериллиевой мишени в том, что при выключении потока бомбардирующих электронов в мишени почти нет наведенной радиоактивности и ее можно перебирать вручную без особых предосторожностей.
Преимущество урановой - в более высоком выходе нейтронов. Выход нейтронов в реакции (gamma,n) быстро растет с увеличением энергии электронов.
   У урана 238 максимум Гигантского резонанса около 13 МэВ и шириной 6 МэВ = +/- 3Мэв. При этой энергии гамма - квантов сечение реакции (gamma,n) максимально и равно 1800 милибарн. На первых 4 МэВ (20-16 МэВ) стабилизируется уровень интенсивности тормозного гамма-излучения. Гигантский резонанс выражается резким увеличением сечения реакции (gamma,n) от энергии гамма- квантов и, как следствие, сгущением выхода нейтронов в его зоне. Энергии этих нейтронов меньше энергии инициирующих гамма - квантов, как минимум, на энергию связи - 7,4 МэВ. В области Гигантского резонанса (ГР) урана 238 наблюдается сгущение потока нейтронов с энергиями от 8,6 до 2,6 МэВ. Однако спад по краям не такой резкий, как у ГР других элементов. Необходимо попытаться использовать часть спектра гамма - квантов ниже порога деления урана 238 -7,4 МэВ, где велика их интенсивность. На эту зону приходится порядка 30% энергии тормозного излучения. Для этого используем бериллий. В мишени, перед зоной основных фотоядерных реакций, надо расположить слой бериллия, в котором пойдёт фотоядерная реакция образования нейтрона с порогом 1,67 МэВ и реакция (n,2n) с порогом 2 МэВ. Толщина слоя бериллия не должна препятствовать проникновения гамма- квантов с энергией выше 7,4 МэВ в урановую часть мишени.
   Предлагается использование ускорителя электронов с описанными выше мишенями для активизации процесса деления в подкритических водяных сборках на природном уране. Подобные сборки работают на тепловых нейтронах. И задача заключается в увеличении плотности потока нейтронов. В нижней части Гигантского резонанса для урана 238 энергия фото - нейтронов порядка 2,6 Мев близка к среднестатистической энергии в реакторе на медленных нейтронах. Следовательно вполне хватит ускорителя на 20 МэВ.
   Иллюстрацией сказанного может быть получение подкритического реактора на природном уране.
   Возьмём 100-литровую подкритическую сборку из стержней природного урана 1- сантиметровой толщины и обычной воды в качестве замедлителя и отражателя. Отношение концентрации воды к концентрации урана 1,4. Это довольно простая и недорогая экспериментальная установка. Сборка цилиндрическая, h/D=0,924, где h<=48 см - высота, D<=52см - диаметр.
   Параметры такой сборки: k=0,98 и t=6,7*10^(-5235) сек при коэффициенте сохранения от утечки быстрых нейтронов L=0,7.
   То есть сборка подкритичная, и самоподдерживающейся цепной реакции нет(K<1). Полное число нейтронов в активной зоне вычисляется по формуле n=S*L*t/[1-k]. Положим для определённости в качестве внешнего источник нейтронов 10^8 нейтронов в секунду. Поток источника S=10^8 нейтронов в секунду может быть обеспечен набором обычным радий - бериллиевых источников или Po210-бериллиевым источником. Тогда полное число нейтронов в активной зоне равно
N = (10^8)*(0,7)*(6,7*10^-5)/0,02 = 2,35*10^5
Средняя скорость нейтронов по распределению Максвелла при комнатной температуре есть
v=(2,2*10^5)*(1,128) = 2,48*10^5 см/сек. Volume - объём активной зоны. Поэтому поток нейтронов равен
F = (N/Volume)*v = (2,35*10^5)*(2,48*10^5)/10^5 = 5,83*10^5 {1/[(cм^2)*сек]}
Полная скорость генерации быстрых нейтронов равна (10^8)/0,02 = 5*10^9 нейтронов в секунду.
   Соотношение для отношения общего потока нейтронов в сборки к потоку источника, равно отношению тепловой мощности сборки к тепловой мощности источника при условии одинакового механизма производства нейтронов в сборке и в источнике, выводится как сумма бесконечно убывающей геометрической прогрессии:
Суммарное N (общее) = S*[1 + k + (k^2) + (k^3) + (k^4) + ...+ (k^{n
-> infinity})] = S/[1-k].
   На 1 джоуль энергии деления в 1 секунду испускается
   2,46*[1/{(200*10^6)*1,6*10^-19}]=(3,3*10^10)*2,46=8,1*10^10 нейтронов.
Эквивалентная мощность сборки составляет (5*10^9)/(8,1*10^10)=
0,062 ватта.
   Описанная подкритическая сборка работает на медленных нейтронах. Актуальна задача увеличения плотности потока нейтронов. В нижней части гигантского резонанса для урана 238 энергия нейтронов порядка 2,6 Мев - близка к среднестатистической энергии в реакторе на медленных нейтронах. Следовательно, необходимо увеличить производительность источника нейтронов - мишени. Положим выход нейтронов с уран - бериллий - урановой мишени к входу электронов 1:20. Для ускорителя с мощностью электронного тока 600 ватт выход нейтронов 0,936*10^13 нейтронов в секунду, N = 2.2*10^10, Поток нейтронов F = 5.46*10^10 {1/[(cм^2)*сек]}. эквивалентная мощность сборки составляет = 5805 ватта.
   Выход плутония = 0,2 кг в год при непрерывной работе.
   Очевидно, что главная деталь предлагаемого устройства - мишень ускорителя ,генерирующая нейтроны. В простейшей версии это мишень из вольфрама + бериллия, накрытая слоем природного урана. В бериллиевой мишени реализуется генерация нейтронов из мягкой части спектра тормозного излучения с энергией от 7,4 до 1,67 МэВ. В урановом слое происходят фотоядерные реакции с выходом нейтронов на ядрах в уране 238 и 235.Реакции деления урана 235 и урана 238 фотонейтронами, в том числе и из слоя бериллия, дают дополнительный выход нейтронов. Энергия нейтронов от 0 до 12,6 МэВ. Более продвинутая бустерная мишень: после слоя бериллия идёт слой высокообогащённого урана - первый бустер, после слоя природного урана второй слой высоко обогащённого урана-второй бустер. С подобной мишенью можно достигнуть выхода нейтронов по отношению к электронам 1:1 и выше за счёт реакции деления урана 235.В этом случае важна не энергия нейтронов, а их количество. Соответственно возрастёт мощность сборки и поток нейтронов.
   Конструкция сборки представляет собой ёмкость на стойках с колёсами, под которую подаётся сборный коллиматор и фильтр и тележка с больным, или тележка с облучаемыми веществами. Во внерабочее время урановую сборку вместе с мишенью можно закатывать в
   Защитный специальный бокс. Для нейтронозахватной терапии понадобится модератор нейтронов. Подобная разработка есть в Обнинске у организации, разрабатывавшей амерециевый медицинский реактор МАРС. В Интернете есть соответствующие материалы.
  
  
  

  
  
  
  
  
  
  
  
  
  
  
  
  
   1
  
  
  
  

 Ваша оценка:

Популярное на LitNet.com Н.Любимка "Долг феникса. Академия Хилт"(Любовное фэнтези) В.Чернованова "Попала, или Жена для тирана - 2"(Любовное фэнтези) А.Завадская "Рейд на Селену"(Киберпанк) М.Атаманов "Искажающие реальность-2"(ЛитРПГ) И.Головань "Десять тысяч стилей. Книга третья"(Уся (Wuxia)) Л.Лэй "Над Синим Небом"(Научная фантастика) В.Кретов "Легенда 5, Война богов"(ЛитРПГ) А.Кутищев "Мультикласс "Турнир""(ЛитРПГ) Т.Май "Светлая для тёмного"(Любовное фэнтези) С.Эл "Телохранитель для убийцы"(Боевик)
Связаться с программистом сайта.

Новые книги авторов СИ, вышедшие из печати:
И.Мартин "Твой последний шазам" С.Лыжина "Последние дни Константинополя.Ромеи и турки" С.Бакшеев "Предвидящая"

Как попасть в этoт список
Сайт - "Художники" .. || .. Доска об'явлений "Книги"