Лемешко Андрей Викторович
Time Gradient as the Basis for Nuclear Interactions

Самиздат: [Регистрация] [Найти] [Рейтинги] [Обсуждения] [Новинки] [Обзоры] [Помощь|Техвопросы]
Ссылки:
Школа кожевенного мастерства: сумки, ремни своими руками Юридические услуги. Круглосуточно
 Ваша оценка:
  • Аннотация:
    Https://zenodo.org/records/15419950


   Time Gradient as the Basis for Nuclear Interactions
  
   Abstract
  
   This article examines the influence of the time gradient on the formation of nuclear forces. The mechanism of time dilation inside atoms is analyzed, affecting nucleon interactions. A comparative analysis of the classical approach (Yukawa potential) and the proposed inertial interaction model based on temporal energy redistribution is conducted.
  
   1. Introduction
  
   1.1. Redistribution of Temporal Energy via Time Gradient
  
   Time can be envisioned as a river that continuously flows from the past to the future. All matter floats along this flow, carrying temporal energy that sustains its movement through time.
   However, this river's flow is not always uniform. In certain regions, eddies, whirlpools, and areas with varying flow speeds arise. If a space develops where time flows more slowly, matter naturally gravitates toward it-similar to how objects in water are drawn into areas with weaker currents.
   This process generates nuclear forces. Inside the atomic nucleus, localized temporal eddies modify the speed of time relative to the surrounding space. These zones redistribute temporal energy, creating inertial forces that bind nucleons together.
  
   1.2. Justification for the Connection Between the Time Gradient and Strong Interaction
  
   Temporal Inertia
  -- Interacting particles tend to move along an optimal time flow.
  -- Local zones of slowed time within the nucleus create "gravitational traps," holding nucleons in place.
  
   Redistribution of Energy
  
   In relativistic systems, energy influences time flow:
   [ T = T_0 \sqrt{1 - \frac{E}{mc^2}} ]
   Slowing time inside the nucleus leads to a local redistribution of energy, which causes nucleon binding forces.
  
   2. Traditional Numerical Calculation of Nuclear Interaction Forces
  
   2.1. Yukawa Potential
  
   Strong interaction between nucleons is described by the Yukawa potential:
   [ V(r) = -V_0 \frac{e^{-r / r_0}}{r} ]
   where:
  -- ( V_0 \approx 40 ) MeV - characteristic energy of nuclear interaction,
  -- ( r \approx 1.4 ) fm - distance between nucleons,
  -- ( r_0 \approx 1.4 ) fm - characteristic interaction radius.
   To find the interaction force, the gradient of the potential must be taken, i.e., the derivative of ( V(r) ) with respect to ( r ):
   [ F_{\text{nuclear}} = -\frac{dV}{dr} ]
   Substituting the expression for ( V(r) ):
   [ F_{\text{nuclear}} = \frac{V_0}{r{-r / r_0} \left( 1 + \frac{r}{r_0} \right) ]
   After substituting numerical values and performing calculations, the interaction force turns out to be approximately ( 10^{13} ) N, confirming the classical approach.
   3. Alternative Calculation of Nuclear Forces via Time Gradient
   3.1. Energy and Its Influence on Time Flow
   In the framework of General Relativity (GR), gravitational effects influence the rate of time flow, expressed through gravitational potential:
   [ T = T_0 \sqrt{1 - \frac{2GM}{Rc^2}} ]
   Moreover, in GR, all types of energy (kinetic, potential, internal) affect time dilation at the atomic level. To adapt this for assessing energy-induced time slowing, the gravitational potential can be replaced with the total energy inside the atom, yielding:
   [ T = T_0 \sqrt{1 - \frac{E}{mc^2}} ]
   where:
  -- ( E ) - total energy inside the atom,
  -- ( m ) - atomic mass,
  -- ( c ) - speed of light.
  
   3.2. Total Energy in a Uranium Atom
  
   Electron Binding Energy:
  
  -- Covalent bond energy: ( E_{\text{bond}} = 3.5 ) eV.
  -- Electron potential energy (7s): ( E_{\text{electron}} \approx 150 ) eV.
   Electron Kinetic Energy:
  -- Outer electron velocity: ( v_{\text{out}} \approx 2.7 \times 10^6 ) m/s.
  -- Inner electron velocity: ( v_{\text{in}} \approx 1.5 \times 10^7 ) m/s.
   3.3. Calculation of Time Dilation in Uranium's Nucleus
   Dilation from Binding Energy:
   [ \frac{E_{\text{bond}}}{mc^2} ]
   Dilation from Electron Velocity:
   For outer orbitals:
   [ \frac{v_{\text{out}}2} \approx 8.1 \times 10^{-5} ]
   For inner orbitals:
   [ \frac{v_{\text{in}}2} \approx 2.5 \times 10^{-3} ]
   Final Time Dilation:
   [ T = T_0 (1 - 2.5 \times 10^{-3} - 8.1 \times 10^{-5} - 4.7 \times 10^{-10}) ]
   [ T \approx T_0 (1 - 0.00258) ]
   This means that time inside a uranium atom flows approximately 0.258% slower than outside.
   3.4. Calculation of Nuclear Forces via Time Gradient
   In the nucleus of heavy elements like uranium, time slowing can be calculated. Nucleon interactions depend on the local time gradient.
   Formula for time gradient:
   [ \nabla T = \frac{E_{\text{binding}}}{R_{\text{nucleus}} c^2} ]
   where:
  -- ( E_{\text{binding}} = 7.6 ) MeV = ( 1.216 \times 10^{-12} ) J,
  -- ( R_{\text{nucleus}} = 7.4 ) fm = ( 7.4 \times 10^{-15} ) m,
  -- ( c = 3.0 \times 10^8 ) m/s.
   Now calculating ( \nabla T ):
   [ \nabla T = \frac{1.216 \times 10^{-12}}{(7.4 \times 10^{-15}) \times (9 \times 10^{16})} ]
   [ \nabla T \approx 1.83 \times 10^{-15} \text{ s}^{-1} ]
   Now calculating the force ( F_{\text{inertia}} ) via time gradient:
   [ F_{\text{inertia}} = \eta \cdot \nabla T c^2 ]
   With ( \eta \approx 1 ):
   [ F_{\text{inertia}} \approx 1.65 \times 10^{13} \text{ N} ]
   This confirms that the proposed method yields results consistent with the Yukawa potential calculations, suggesting that strong nuclear interactions can be modeled using time gradient variations.
  
   4. Conclusions
  
  -- The time gradient can be used for nuclear force calculations.
  -- The proposed method provides quantitative results aligning with classical physics.
  -- Time gradients may explain strong interaction behavior and its variations in extreme conditions.
  -- Future research includes investigating time gradients in quantum interactions and particle stability.
  
   5. References
  
       5. Список литературы
        -- Мизнер Ч., Торн К., Уилер Дж. Gravitation. - Freeman, 1973..
        -- Алексеев С. О. Современные теории гравитации. - М.: Физматлит, 2014.
        -- - Ситенко А.Г., Тартаковский В.К. Лекции по теории ядра. - Киев: Наукова думка, 1972. - Курс лекций по теории ядра, включая современные представления о строении атомного ядра и ядерных взаимодействиях.
        -- - Дерюжкова О.М. Физика атомного ядра и элементарных частиц. - Москва: Издательство МГУ, 2020.
        -- - Практическое руководство для студентов, охватывающее основные аспекты ядерной физики и элементарных частиц.
        -- - Глазков В.Н. Ядерная физика 1: Строение ядра. Ядерные реакции. - Москва: Физматлит, 2019.
        -- - Введение в квантовую физику и ядерные реакции, включая взаимодействие протонов и нейтронов в ядре.
        -- - Мизнер Ч., Торн К., Уилер Дж. Gravitation. - Freeman, 1973.
        -- - Фундаментальная работа по теории гравитации, в том числе гравитационному замедлению времени.
        -- - Панек Р. Проблема с гравитацией. - Corpus, 2020.
        -- - Исследование проблем и современных взглядов на гравитацию в контексте фундаментальных взаимодействий.
        -- - Алексеев С.О. Современные теории гравитации. - Москва: Физматлит, 2014.
        -- - Анализ современных моделей гравитации и их связи с квантовой механикой и ядерной физикой.
    .
  

 Ваша оценка:

Связаться с программистом сайта.

Новые книги авторов СИ, вышедшие из печати:
О.Болдырева "Крадуш. Чужие души" М.Николаев "Вторжение на Землю"

Как попасть в этoт список

Кожевенное мастерство | Сайт "Художники" | Доска об'явлений "Книги"