Мосин Олег Викторович : другие произведения.

Включение Атомов Дейтерия, Углерода-13, Азота-15, И Кислорода-18 В Молекулы Аминокислот И Белков.

"Самиздат": [Регистрация] [Найти] [Рейтинги] [Обсуждения] [Новинки] [Обзоры] [Помощь|Техвопросы]
Ссылки:


 Ваша оценка:
  • Аннотация:
    Нанотехнология - это наука будущего. Она позволяет конструировать модели на основе отдельных молекул и атомов и производить манипуляции с ними. Очень перспективно в этом плане разработка методов включения атомов стабильных изотопов в молекулы таких биологически активных соединений, как аминокислоты и белки для создания на их основе лекарств и диагностических препаратов, а также для изучения с их помощью молекулярной организации клетки методом ядерного магнитного резонанса.

НАНОТЕХНОЛОГИЯ И ВКЛЮЧЕНИЕ АТОМОВ ДЕЙТЕРИЯ, УГЛЕРОДА-13, АЗОТА-15, И КИСЛОРОДА-18 В МОЛЕКУЛЫ АМИНОКИСЛОТ И БЕЛКОВ.

О. В. МОСИН

Московская государственная академия тонкой химической технологии им. М.В. Ломоносова, 117571, г. Москва, проспект Вернадского, д.86

Статья посвящена развитию современных биотехнологических и химико-ферментативных методов по включению атомов дейтерия, углерода-13, азота-15 и кислорода-18 в молекулы аминокислот и белков. Рассмотрены потенциальные возможности этих методов для направленного синтеза изотопномеченых молекул аминокислот и белков. Представлены собственные и имеющиеся в литературе данные по получению и использованию синтезированных меченых соединений в разнопрофильных биохимических исследованиях с применением методов спектроскопии ядерного магнитного резонанса (ЯМР), инфракрасной (ИК) и лазерной спектроскопии, а также масс-спектрометрии.

Ключевые слова: стабильные изотопы; микроорганизмы; биосинтез; аминокислоты и белки.

ВВЕДЕНИЕ

Метод включения атомов стабильных изотопов (2Н, 13C, 15N, 18О) в молекулы - важное направление в биохимических и структурно-функциональных исследованиях разнообразных природных соединений и, в частности, аминокислот и белков [1-7]. Молекулы этих изотопномеченых биологически активных соединений (БАС), полученные данным методом с различными уровнями изотопного обогащения, от селективно до униформно меченых, являются удобными инструментами для разнопрофильных метаболических и биохимических исследований [8, 9], медицинской диагностики различных заболеваний [10-13], химических синтезов разнообразных изотопномеченых соединений на их основе. Например, [2H]- и [13C]фенилаланин и [2H]- и [13C]тирозин использованы в синтезах меченых аналогов пептидных гормонов и нейропептидов [14, 15].

Тенденции к предпочтительному применению стабильных изотопов по сравнению с их радиоактивными аналогами обусловлены отсутствием радиационной опасности и возможностью определения локализации метки в молекуле методами высокого разрешения: спектроскопией ЯМР [16-19], ИК- [20, 21] и лазерной спектроскопией [22, 23], масс-спектрометрией [24, 25]. Развитие методов детекции стабильных изотопов за последние годы позволило повысить эффективность проведения многочисленных биологических исследований de novo, а также изучать структуру и механизм действия многих клеточных БАС на молекулярном уровне, манипулируя атомами и конфигурациями молекул, что коррелирует со всеми современными нанотехнологическими стандартами.

Разработка методов включения атомов стабильных изотопов в молекулы аминокислот и белков, является актуальной задачей для современной биотехнологии и нанотехнологии, поскольку селективное введение атомов в молекулы может приводить к включению лишь одного отдельно выбранного атома по определённой позиции углеродного скелета молекулы. Это весьма перспективно и интересно для нанотехнологии, когда в полученной молекуле фигурирует лишь один или несколько атомов, замещённых на стабильные изотопы по определённым положениям молекулы.

Разные методы, используемые для введения стабильных изотопов в молекулы БАС, обычно приводят к получению продуктов, представляющих собой смеси молекул, различающихся количеством атомов, замещённых на стабильные изотопы. Поэтому необходимо разрабатывать и применять новые подходы по получению изотопномеченых БАС, основанные на использовании генно-инженерных методов, комбинации биотехнологических и химико-ферментативных подходов и т. п.

В зависимости от цели исследования при реализации того или иного подхода по получению изотопномеченых аминокислот и белков должны учитываться их стоимость, выходы, возможности более полного выделения и очистки, а также изотопная чистота синтезированных молекул.

При получении изотопномеченых молекул аминокислот и белков основные затраты связаны с закупкой сырья (субстрата), расходом электроэнергии (на перемешивание, аэрацию и процессы массопереноса) и охлаждением (теплообменом). При использовании природных сырьевых источников (пептонов, белково-витаминных концентратов и т. п.) в качестве субстратов для производства изотопномеченых БАС необходимо также учитывать расход электроэнергии, пара и топлива на предварительную глубокую обработку сырья, чтобы превратить его в поддающиеся микробиологическому воздействию соединения. Сравнительная оценка различных способов производства изотопномеченых аминокислот и белков показывает, что основные расходы связаны со стоимостью сырья, составляющей 70-80% всех затрат.

Использование молекул аминокислот и белков, меченных стабильными изотопами, в значительной мере определяется ограниченной доступностью и дороговизной самих высокоочищенных изотопов, выделяемых из различных природных источников. Природная распространенность стабильных изотопов варьирует от 0,015% (относительно общего количества элемента) для дейтерия, до 1,11% для изотопа углерода 13С, однако, несмотря на низкое содержание изотопов в пробах, разработанные в последние годы высокие методы обогащения и очистки стабильных изотопов позволяют получать молекулы изотопно-меченных субстратов с высокой степени изотопной чистоты.

Несмотря на всё возрастающий мировой интерес к молекулам изотопномеченых БАС, в отечественной литературе имеются немногочисленные сведения, касающиеся методов получения этих важных соединений, охарактеризованных нами [26-28]. Целью настоящей статьи является освещение современных методов включения атомов стабильных изотопов в молекулы аминокислот и белков.

ХИМИЧЕСКИЕ МЕТОДЫ ВКЛЮЧЕНИЯ АТОМОВ СТАБИЛЬНЫХ ИЗОТОПОВ В МОЛЕКУЛЫ.

Химический синтез

Синтетические методы включения атомов стабильных изотопов в молекулы аминокислот представляют собой модифицированный классический синтез аминокислот, в котором стадии карбоксилирования, аминирования, восстановления, гидрирования или гидролиза проводят с использованием меченых реагентов, содержащих стабильные изотопы дейтерия, углерода-13, азота-15, кислорода-18 с соответствующим уровнем изотопной чистоты. Так, для синтеза [2Н]-, [15N]- и [18О]аминокислот используют тяжёлую воду, дейтероводород, дейтерохлористоводородную кислоту; LiAl2H4; B22H6; 15NH3; Na15NH2; 15NH2Cl, 18H2O и др. (более подробно о методах получения [2H]-и [15N]аминокислот см. обзоры [29, 30]).

Особую ценность для многих исследований имеют молекулы [13C]аминокислот, которые получают за счёт карбоксилирования соответствующих органических соединений с помощью 13CO2 и Ni(13CO)4 по связи углерод-водород или углерод-металл с последующим гидролизом.

Перспективные синтетические подходы по включению атомов углерода-13 в различные положения молекул, включая карбоксильные СООН- и Сa- положения, продемонстрированы в работах [31-36], а также описан стереоселективный синтез молекул [13С]аминокислот [37-39]. Несмотря на это, химические синтезы многостадийны, требуют больших расходов ценных реагентов и меченых субстратов и приводят в результате к продукту, представляющему собой рацемическую смесь D- и L-форм молекул аминокислот, для разделения которых требуются специальные методы [40].

Недостатком химического синтеза является то, что он приводит к синтезу молекул [13С]аминокислот, у которых атомы углерода-13 локализуются по карбоксильным СООН-положениям молекул. Это существенно ограничивает использование данных [13C]аминокислот для биологических исследований вследствие возможной потери изотопной метки углерода-13 за счёт функционирования многочисленных реакций ферментативного декарбоксилирования, происходящих в организме [41]. Разработанные за последние годы синтетические методы введения атома углерода-13 в молекулы аминокислот затрагивают такие положения углеродных атомов в молекулах аминокислот, как метильная группа метионина [42], С2- положение в имидазольном кольце молекулы гистидина [43], а также атомы углерода при карбоксильных СООН- группах аспарагиновой [44], и глутаминовой кислот [45].

Более тонкие способы включения атомов стабильных изотопов в молекулы аминокислот связаны с использованием комбинации химических и ферментативных подходов. Так, L-[4-13C]валин, L-[3-13C]триптофан и другие L-[13C]аминокислоты, были синтезированы с использованинем ферментов [46] (более подробно о химико-ферментативных подходах по синтезу изотопномеченых аминокислот см ниже).

'''Изотопный (1Н-2Н)- и (16О-18О)-обмен в молекулах аминокислот и белков.'''

Эффективным подходом для включения атомов дейтерия в молекулы аминокислот является селективное замещение определённых легко обмениваемых на дейтерий ароматических протонов в бензольном кольце молекул фенилаланина и тирозина, в индольном кольце триптофана и в имидазольном кольце гистидина, как в виде индивидуальных молекул аминокислот, так и в составе аминокислотных остатков в белках [47, 48].

Реакция изотопного (1Н-2Н)-обмена протекает по механизму электрофильного замещения и затрагивает определённые, наиболее чувствительные к замещению протоны в молекулах ароматических аминокислот. Этим методом могут быть получены в граммовых количествах L-[2,3,4,5,6-2Н]фенилаланин в 85% 2H2SO4 при 500 C, L-[3,5-2H]тирозин в 6 н. 2H2SO4 при слабом кипячении раствора, L-[2,4,5,6,7-2H]триптофан в 75% [2H]трифторуксусной кислоте при 250 С и L-[2-2H]гистидин в 6 н. NaO2H при 800 С.

Вследствие того, что замещаемые на дейтерий протоны в молекулах белков прочно связаны с атомами углерода и трудно обмениваются на дейтерий в мягких условиях, метод несколько лимитируется из-за нестабильности белков в жестких условиях (85-90% НCl/H2SO4, 80-1000 C), необходимых для проведения реакции изотопного обмена [49]. Кроме того, проведение изотопного обмена в более жёстких условиях сопровождается рацемизацией аминокислот. Избежать этого позволяет непосредственное введение полученных за счёт (1Н-2Н)-обмена дейтерированных аналогов аминокислот - L-[2,3,4,5,6-2Н]фенилаланина, L-[3,5-2H]тирозина и L-[2,4,5,6,7-2H]триптофана в молекулы индивидуальных белков, например, в бактериородопсин, синтезируемый бактерией Halobacterium halobium [50].

Разработан новый метод включения атомов дейтерия в молекулы аминокислот (глицин, аланин, валин, изолейцин, серин, треонин, пролин, гистидин) реакцией высокотемпературного твёрдофазного каталитического изотопного обмена [51, 52]. В соответствии с этим методом L-аминокислота в протонированой форме реагирует с газообразным дейтерием при 200-2500 С в присутствии высокодисперстного катализатора группы платины (Pt, Pd, Rh), и неорганического носителя (BaSO4, CaCO3, Al2O3).

С помощью изотопного обмена можно включать изотоп кислорода-18 в молекулы аминокислот. Для этого используют реакцию изотопного (16О-18О)-обмена по атомам кислорода карбоксильных СООН- групп в молекулах аминокислот в присутствии Н218О в качестве источника метки [53]. Использование этого метода лимитируется высокой стоимостью полученных таким способом [18О]аминокислот. Однако, он полностью оправдывает себя при проведении многочисленных биомедицинских исследований с применением синтезированных молекул [18O]аминокислот, так как они, в отличие от их дейтерированных аналогов, стабильны по отношению к обратному изотопному обмену. Например, [18О]аминокислоты стабильно существовали в плазме крови в течении нескольких дней после инъекции: обратный изотопный (18О-16О)-обмен по карбоксильным положениям в молекуле [18О]тирозина и других молекулах [18O]аминокислот проявлялся лишь при длительной инкубации клеток крови с питательной средой [54].

БИОТЕХНОЛОГИЧЕСКИЕ МЕТОДЫ ПОЛУЧЕНИЯ ИЗОТОПНОМЕЧЕНЫХ АМИНОКИСЛОТ И БЕЛКОВ

Выращивание микроорганизмов на средах со стабильными изотопами.

Для многих целей, и прежде всего для структурных исследований белков, биотехнология предлагает альтернативный химическому способу включения атомов стабильных изотопов в молекулы аминокислот и белков, который приводит к высоким выходам синтезируемых продуктов, к эффективному включению атомов изотопов в молекулы соединений, и, самое главное, к сохранению природной конфигурации (стереоселективности) конечных продуктов [55, 56]. Метод заключается в выращивании штаммов-продуцентов необходимых БАС на ростовых средах, содержащих различные субстраты, представляющие собой органические соединения и неорганические соли, содержащие стабильные изотопы дейтерия, углерода-13, азота-15 и кислорода-18 [57-61].

Решающее значение для биотехнологического введения атомов стабильных изотопов в молекулы аминокислот и белков имеет правильный выбор микроорганизмов, способных к устойчивому росту на средах, содержащих стабильные изотопы и к продукции нужных БАС. Наиболее доступными объектами для получения многих изотопномеченых белков признаны микроводоросли, большое разнообразие которых в природе позволяет выбирать среди них отдельные виды, способные к эндогенному накоплению белков [62]. В то же время комплексное использование компонентов меченой биомассы микроводорослей позволяет выделять, например, дейтерированные аминокислоты, в том числе и гетеромеченые, из гидролизатов суммарных белков биомассы, выращенной на тяжёловодородной среде [63].

Другие традиционные штаммы микроорганизмов также могут эффективно применяться для получения изотопномеченых молекул аминокислот и белков. Основными требованиями к микроорганизмам, используемым для этих целей являются устойчивый рост на средах, содержащих стабильные изотопы и высокий уровень продукции нужных БАС, который можно повысить за счёт применения генно-инженерных методов, а также мутагенеза и селекции. Это создаёт предпосылки для конструирования новых бактериальных штаммов-продуцентов с заданными свойствами и для дальнейшего изучения их характеристик. Биотехнологический подход экономически целесообразен и особенно незаменим, когда необходимы высокая стереоселективность и максимальные уровни изотопного обогащения синтезируемых соединений.

При биотехнологическом включении атомов стабильных изотопов в молекулы используют несколько подходов, один из которых заключается в униформном обогащении стабильными изотопами молекул клеточных БАС по всему углеродному скелету молекул. Это достигается за счёт выращивания микроорганизмов на средах, содержащих меченые субстраты высокого уровня изотопной чистоты и с последующим фракционированием компонентов биомассы на различные классы природных соединений [64].

Молекулы аминокислот с униформным характером включения атома углерода-13 по скелету молекулы получают, в основном, при выращивании автотрофных микроорганизмов на ростовых средах, содержащих вместо обычных углеродных субстратов исключительно их низкомолекулярные [13С]аналоги, например 13С-диоксид углерода [65]. Таким способом были получены многие [13C]белки, синтезируемые микроводорослями: ферридоксин из Anabaena [66], цитохром C-553 [67], цитохром C2 из Rhodospirillum [68], и флаводоксин из Anabaena 7120 [69] и использованы для дальнейших ЯМР исследований.

Для структурных исследований белков методом спектроскопии ЯМР, для которого необходимо, чтобы как можно больше атомов в молекуле были замещены на их стабильные изотопы, биосинтетические подходы по получению униформно меченых молекул [13C]аминокислот могут обеспечить сравнительно недорогое получение нужного количества меченых [13C]продуктов [70].

Включения атома азота-15 в молекулы аминокислот добиваются аналогичным путём за счёт выращивания микроорганизмов на водных средах, содержащих К15NO3 или другие 15N-содержащие соли [71], в то время как высокообогащённые дейтерием аминокислоты можно получать с использованием ростовых сред, содержащих вместо обычной воды 99,9% тяжёлой воды [72].

Существует ряд определённых трудностей при использовании тяжёлой воды в качестве источника атомов дейтерия, поскольку необходимо учитывать эффекты, связанные с клеточной адаптацией к ней. Известно, что тяжёлая вода действует токсически на клетки, ингибируя жизненно-важные функции роста и развития многих микроорганизмов.

Однако, несмотря на негативный биостатический эффект тяжёлой воды, разные таксономические роды бактерий могут быть достаточно легко адаптированы к росту и биосинтезу на средах содержащих максимальные концентрации тяжелой воды [73], в то время как клетки высших растений способны выдерживать не более 60% тяжёлой воды [74], а животные клетки не более 30% [75].

С точки зрения физиологии и генетики адаптация клетки к тяжёлой воде является комплексным феноменом и может привести к изменениям активностей ферментативных реакций, что сказывается косвенно на структуре и функциях молекул синтезируемых БАС, процессах биосинтеза и метаболизма и даже морфологии клетки. В связи с этим, разработка методов физиологической адаптации клетки к тяжёлой воде для получения высокообогащённых дейтерием молекул БАС является весьма актуальной задачей [76-78].

При адаптации биологических объектов к тяжёлой воде учитываются химические изотопные эффекты, которые для изотопных пар протий/дейтерий могут быть аномально высокими [79]. Различают первичные и вторичные изотопные эффекты. К первичным изотопным эффектам следует отнести изменение констант скоростей химических реакций, протекающих в тяжёлой воде по отношению к таковым в обычной воде, измеренных как соотношение kH/k2H. Это соотношение меняется для различных связей, образованных с участием дейтерия и может варьировать в пределах от 7 до 10 единиц. К вторичным изотопным эффектам относятся изменения в констатнах скоростей химических реакций, обусловленных действием 2Н2О как растворителя (большая струрированность и вязкость, плотность, коэффициент диффузии и т. п.).

Тяжёлая вода является гидроскопическим соединением, активно поглощающем пары влаги из воздуха, неорганических солей среды, при стерилизации и т. п., и, следовательно, этапы, связанные с выращиванием бактерий на тяжёловодородных средах необходимо проводить в герметических условиях с использованием безводных реагентов, предварительно перекристаллизованных в тяжёлой воде неорганических солей и т. п.

Атомы кислорода-18O можно включать в молекулы аминокислот за счёт выращивания микроорганизмов на средах, содержащих другой изотопный аналог воды - 18O-воду. Адаптация клеток к 18O-меченная вода не является лимитирующим этапом. Однако, 18O-меченная вода используется в качестве источника изотопной метки в редких случаях, вследствие высокой стоимости изотопных соединений кислорода [80].

Селективного включения атомов стабильных изотопов в определённые положения молекул аминокислот и белков достигается за счёт применения комбинации меченых и немеченых субстратов в ростовых средах [81], меченых предшественников аминокислот [82], или при использовании ауксотрофных по определённым аминокислотам штаммов микроорганизмов [83]. Для этих целей очень хорошо подходит такая распространённая бактерия как E. coli, биосинтез аминокислот в которой к настоящему времени изучен наиболее детально и для которой получен многочисленный набор мутантных форм [84].

Очень часто, разветвлённые пути метаболизма меченых аминокислот в клетке приводят к специфическому мечению других биосинтетически родственных молекул аминокислот за счёт использования клеткой многочисленных минорных путей биосинтеза и сопряжённых реакций метаболизма. В некоторых случаях этот фактор может существенно облегчить процесс включения атомов стабильных изотопов в молекулы селективно меченых белков и аминокислот. Так был получен [15N]Т4-лизоцим, с селективным характером включения атомов азота-15 лишь по остаткам глутамата, глутамина и аргинина в молекуле [85]. В работах [86, 87] сообщается о получении других индивидуальных [15N]белков, селективно меченных изотопом азота-15 по остаткам гистидина и лизина.

Использование ауксотрофных мутантов бактерий для включения атомов стабильных изотопов в молекулы аминокислот и белков.

Использование ауксотрофных по определённым аминокислотам форм микроорганизмов для включения атомов стабильных изотопов в молекулы стало настолько популярным в биотехнологии, что сегодня его следует рассматривать как отдельное направление. Селективность включения атомов стабильных изотопов в молекулы достигается в результате добавления в ростовую среду меченого аналога соответствующей аминокислоты или её предшественника, по которым штамм ауксотрофен и которые непосредственно или через de novo биосинтетический цикл предшественников заменяют в белке нативную аминокислоту. При этом ауксотрофные штаммы могут относиться к различным таксономическим группам микроорганизмов, включая метаногенные и метилотрофные бактерии, биотехнологический потенциал которых для получения изотопномеченых аминокислот в настоящее время общепризнан. Метаногенные бактерии, относящиеся к группе облигатных анаэробов, которые получают энергию за счет ассимиляции газовой смеси (H2-CO2) [88, 89], чаще всего используют для включения изотопа углерода-13. Эффективность мечения аминокислот изотопом углерода-13 достигается за счёт получения и использования ацетатзависимых мутантов метаногенных бактерий, неспособных синтезировать ацетил-СоА из СО2 и вследствие этого для роста которых необходим экзогенный ацетат [90]. Поэтому выращивание этих бактерий проводят на ростовых средах, содержащих наряду с (H2-CO2) добавки ацетата, которые могут заменяться их [13С]аналогами. При росте этих метанотрофов на средах с (водород-13C-диоксид углерода) и [13C]ацетатом удаётся достичь униформного характера включения изотопа углерода-13 по углеродным скелетам в молекулах аминокислот, а также резкого уменьшения уровня включения экзогенного 13С-диоксида углерода в конечный продукт ассимиляции углерода - метан [91]. При этом удается почти полностью избежать процесса разбавления метки в молекулах синтезируемых [13C]аминокислот.

Селективного включения атомов углерода-13 в молекулы аминокислот можно достичь за счёт использования ростовых сред, содержащих немеченую смесь (Н2-СО2) и [13C]ацетат либо 13СО2 в составе смеси (Н2-13СО2) и немеченый ацетат [92]. Вследствие высокой стоимости 13С-диоксида углерода и неудобств, связанных с его компрессией, включение атомов углерода-13 в молекулы чаще всего осуществляют по первому варианту, т. е. с использованием смеси (Н2-СО2) и [13C]ацетата. Однако, как было отмечено в работах [93, 94], ацетатассимилирующим метаногенам, например, Methanospirillum hungatei GP1 требуются значительные концентрации ацетата для оптимального роста. Вследствие этого основным недостатком использования этих бактерий является значительный расход изотопной метки.

При биотехнологическом включении атомов стабильных изотопов в молекулы аминокислот необходимо учитывать пути их биосинтеза в клетке, которые для метаногенных бактерий хотя и являются характеристичными, но несколько отличаются от известных для E. coli. Данные по биосинтезу [13C]аминокислот, полученных при выращивании ауксотрофной по ацетату бактерии M. hungatei GP1 в среде, содержащей (H2-CO2) и [1,2- 13C]ацетат в качестве источников углерода и энергии, приведены ниже.

[13C]Аланин. Включение атома изотопа углерода 13С в молекулу аланина происходило за счет реакции карбоксилирования ацетил-СоА до пирувата. Такой путь биосинтеза был продемонстрирован для других таксономических родов и видов метаногенных бактерий [95].

[13C]Серин и [13C]глицин. Характер распределения атомов изотопа углерода-13 в молекулах серина и глицина был объяснён частичным фосфорилированинем пирувата до фосфопирувата и образованием 3-фосфоенолпирувата по гликогенному пути ассимиляции углерода. Подтверждением этому служат значительные уровни активности ферментов- фосфоенолпируватсинтетазы, енолазы и 2-фосфоглицератмутазы, которые были обнаружены в клеточных экстрактах других метаногенов, например, Methanobacterium thermoautotrophicum [96].

[13C]Аспарагиновая кислота, [13C]треонин и [13C]метионин. Включение атома изотопа углерода-13C по атому углерода a-карбоксильной группы аспартата, происходящего из C1-ацетата и по b-углеродному атому С2-ацетата и включение атома изотопа углерода-13 в карбоксильные группы аминокислот из диоксида углерода, свидетельствовало о том, что биосинтез аспартата в этой бактерии происходил через цикл трикарбоновых кислот в результате ферментативного карбоксилирования пирувата до оксалоацетата.

Распределение атомов изотопа углерода-13 в молекулах треонина и метионина происходило в соответствии с путем биосинтеза этих аминокислот из аспартата. Атом углерода в метильной группе молекулы метионина происходил из диоксида углерода.

[13C]Лизин. Распределение атома изотопа углерода-13 в молекуле лизина свидетельствовало о том, что лизин синтезировался из пирувата и аспартата по типичному для бактерий диаминопимелиновому пути [97].

[13C]Глутаминовая кислота, [13C]аргинин и [13C]пролин. В молекуле глутаминовой кислоты атомы изотопа углерода-13 детектировались в Сb и Cg положениях углеродного скелета молекулы. Атомы углерода при карбоксильной СООН- группе молекулы глутаминовой кислоты и в a-положении происходили из диоксида углерода. Этот результат свидетельствовал о том, что цикл трикарбоновых кислот приводил к образованию a-кетоглутарата. Распределение атомов изотопа углерода-13 в молекулах аргинина и пролина аналогично таковому в глутаминовой кислоте.

[13C]Лейцин, [13C]валин и [13C]изолейцин. Характер изотопного включения углерода-13 в молекулы лейцина и валина свидетельствовал об их образовании из a-ацетолактата, в то время как биосинтез изолейцина отличался от ожидаемого пути биосинтеза этой аминокислоты из треонина. В клетках M. hungatei изолейцин образовывался из ацетата. Аналогичный путь биосинтеза изолейцина был обнаружен у спирохеты [98], у лейцинассимилирующего мутанта Serratia marcescens [99], и у мутанта Saccharomyces cerevisiae, у которого дефектен ген треониндезаминазы [100].

[13C]Фенилаланин и [13C]тирозин. Меченые позиции атома углерода в молекулах фенилаланина и тирозина полностью совпадали с типичным для бактерий путем биосинтеза этих аминокислот из шикимовой и хоризмовой кислот [101].

[13C]Гистидин. Атом углерода в положении Cg имидазольного кольца гистидина происходил из диоксида углерода. Углеродный атом в положении Сe имидазольного кольца гистидина был замещён на изотоп углерода-13 с участием С2- ацетата.

Другими перспективными источниками изотопномеченых аминокислот и белков признаны метилотрофные микроорганизмы, способные ассимилировать метанол и C1-углеродные соединения по рибулозофосфатному и сериновому циклам ассимиляции углерода. Метилотрофы представленны в таксономическом аспекте грамположительными, грамотрицательными бактериями и дрожжами, интерес к которым в настоящее время все возрастает благодаря разработке новых технологий химического синтеза метанола [102]. Эти бактерии привлекают внимание исследователей прежде всего как дешевые источники микробного белка и аминокислот [103, 104]. Знание путей бактериального метаболизма позволяет осуществлять направленное введение атомов стабильных изотопов в молекулы аминокислот.

Метилотрофные бактерии окисляют метанол с использованием фермента - метанолдегидрогеназы, последующие окислительные реакции катализируют формальдегид- и формиатдегидрогеназа [105-108]. Лишь затем продукт окисления метанола в виде формальдегида фиксируется клеткой одним из двух путей ассимиляции углерода: рибулозо-5-монофосфатным и сериновым [109, 110].

Мы начали эффективно использовать ауксотрофные штаммы метилотрофных бактерий для включения атомов стабильных изотопов дейтерия и углерода-13 в молекулы аминокислот ещё 10 лет тому назад. Исследования проводились на кафедре биотехнологии Московской государственной академии тонкой химической технологии им. М.В. Ломоносова под руководством академика РАМН В.И. Швеца. Для этих целей мы использовали биологическую конверсию дешёвых низкомолекулярных меченых субстратов - (13С)метанола, (2Н)метанола и тяжёлой воды в клетках метилотрофов в молекулы дорогостоящих меченых БАС [111-113]. Традиционным подходом при этом было выращивание соответствующих штаммов-продуцентов аминокислот, устойчивых к росту на средах, содержащих стабильные изотопы водорода, углерода, азота и др. В работах [114, 115] сообщается о включение атомов изотопа углерода-13 в молекулы аминокислот (уровни включения стабильных изотопов в молекулах варьируют от 30% для L-[13C]лейцина до 90% для L-[13C]фенилаланина) за счёт использования ауксотрофных по L-изолейцину бактерий Methylobacillus flagellatum.

Наши исследования показали, что [13С]метанол в отличие от тяжёлой воды не оказывает существенного биостатического эффекта на ростовые и биосинтетические характеристики метилотрофов [116], поэтому данный подход можно эффективно использовать для введения в молекулы синтезируемых БАС двойной изотопной метки (например, введение изотопа углерода 13С в молекулы на фоне максимальных концентраций тяжёлой воды в ростовых средах). В работе [117] нами были получены [2H]- и [13С]аминокислоты с разными уровнями изотопной обогащённости при росте ауксотрофного по L-лейцину штамма факультативных метилотрофных бактерий Brevibacterium methylicum и ауксотрофного по L-изолейцину штамма облигатных метилотрофных бактерий Methylobacillus flagellatum на минимальных средах с (13С)метанолом, (2Н)метанолом и тяжёлой водой. [13C]- и [2Н]аминокислоты разного уровня изотопной замещённости выделяли как из культуральных жидкостей, полученных после выращивания бактерий на средах с соответствующими изотопномечеными субстратами, так из гидролизатов белков биомассы.

Биосинтетически полученные нами молекулы [2H]- и [13С]аминокислот представляли собой смеси, в которых присутствовали изотопнозамещённые формы молекул, различающиеся количеством атомов водорода и углерода, замещённых на дейтерий и изотоп углерода-13. При этом распределение зависело как от общего включения изотопа в молекулу, так и от способа их получения. Наши исследования показали, что в условиях ауксотрофности по лейцину уровень изотопного обогащения молекулы лейцина, а также метаболически связанных с ним молекул аминокислот немного ниже, чем для других молекул аминокислот, вероятно, за счёт сохранения минорных путей метаболизма, связанных с биосинтезом данных аминокислот de novo. При выращивании B. methylicum на среде, содержащей 98% тяжёлую воду и немеченый L-лейцин, уровни включения дейтерия в молекулы индивидуальных аминокислот культуральной жидкости составил 51% для молекулы лейцина/изолейцина, 58,8% для молекулы валина, в то время как уровни изотопного включения для молекулы аланина составили 77,5%, а для молекулы фенилаланина -75%.

Аналогичная корреляция наблюдается и в молекулах аминокислот белковых гидролизатов. Уровни включения атомов дейтерия и углерода-13 в молекулы метаболически связанных аминокислот в пределах одинаковых концентраций меченых субстратов, обнаружили определённую коррелляцию: уровни изотопного включения для молекул валина и лейцина (семейство пирувата), фенилаланина и тирозина (семейство ароматических аминокислот) коррелировали. Уровни изотопного включения для молекул глицина и серина (семейство серина), аспарагиновой кислоты и лизина (семейство аспарагина) также имели близкие величины.

Важным результатом являются высокие уровни включения атомов стабильных изотопов 2Н и 13С в молекулы полученных аминокислот. В настоящее время исследования по изучению биотехнологического потенциала метилотрофных бактерий для направленного синтеза изотопномеченых аминокислот и других БАС продолжаются как на кафедре биотехнологии МГАТХТ им. М.В. Ломоносова, так и в ГНИИ ГЕНЕТИКА.

Генно-инженерные методы включения атомов стабильных изотопов в молекулы аминокислот и белков.

Осуществлять направленное биосинтетическое включение атомов стабильных изотопов в молекулы аминокислот и белков удобно за счёт использования векторов экспрессии нужных генов, ответственных за биосинтез того или иного интересующего исследователей белка. Оправдано и целесообразно использование для этих целей векторов экспрессии на основе плазмидной ДНК бактерии E. coli, например, вектор экспрессии Т4 лизоцима, включающий в своем составе плазмиду pHSe5 [118]. В результате использования этого вектора экспрессии, были получены миллиграммовые количества Т4-лизоцима, селективно меченного стабильными изотопами азота-15 ли углерода-13. Включение атомов стабильных изотопов в молекулы достигалось за счет роста генного конструкта E. coli на средах, содержащих [15N]- или [13С]аминокислоты. Метод также может применяться для получения индивидуальных меченых белков, экспрессия которых происходит в системах, отличных от E. coli, например, системы экспрессии на основе клеток насекомых или млекопитающих [119].

Другие микробные системы, в которых белки экспрессируются с высокими выходами, также могут быть пригодны для включения атомов стабильных изотопов в молекулы. К ним относятся такие хорошо изученные биологические объекты, как дрожжи, бактерии и бактериофаги. Так, за счёт использования вышеперечисленных микробных объектов в качестве векторов экспрессии были получены препаративные количества индивидуальных очищенных [15N]белков: нуклеаза стафилококка [120], интерлейкин 1b [121], белок репрессор фага P22C2 [122], тиредоксин E. coli [123], гемоглобин [124], a-протеаза [125], ингибитор субтилизина [126], репрессор фага l [127], и белок человеческого фактора роста N-ras P21 [128].

В работе [129] описан метод включения атомов дейтерия в молекулы индивидуальных белков с использованием вектора экспрессии на основе штамма облигатных метилотрофных бактерий Methylobacillus flagellatum. Метод состоит в том, что в метилотрофах клонируют структурный ген исследуемого белка. Таким методом можно в будущем получать, например, [2H]b-интерфероны, хорошо экспрессируемые в клетках метилотрофов, либо другие интересующие исследователей белки. Метод также позволяет вводить в молекулы аминокислот и белков другие атомы стабильных изотопов, например, изотоп углерода-13. В связи с этим следует подчеркнуть, что основным недостатком при использовании полученных данным методом [13C]аминокислот в ЯМР-исследованиях являются всё же недостаточно высокие уровни изотопного обогащения аминокислот, что обусловливает усложнение спектров ЯМР за счет 12C- 13C-спин-спинового взаимодействия между близлежащими атомами углерода в молекуле [130]. Так как мультиквантовые резонансы близлежащих атомов углерода в молекуле являются основным препятствием для интерпретации спектров ЯМР, необходимо применять усовершенствованные методы включения атома изотопа углерода-13 в молекулы аминокислот, позволяющие лимитировать процесс разбавления изотопной метки. Так, в последнее время были генетически сконструированы новые штаммы бактерий, которые несут мутации по генам метаболизма определенного круга предшественников этих аминокислот [131]. Это позволяет избежать разбавления изотопной метки при росте микроорганизма на среде, содержащей те или иные меченые субстраты за счет ингибирования биосинтеза аминокислот de novo у данных мутантных штаммов бактерий.

При выборе определенных мутаций по генам метаболизма стремятся удовлетворить как миниум двум условиям для нормального функционирования подобных генетически сконструированных систем, чтобы, во-первых, по возможности снизить деградацию изотопной метки или ее разбавление в процессе внутриклеточного синтеза немеченых предшественников de novo и во-вторых, свести к минимуму процессы перестройки меченых положений углеродного скелета молекулы за счет биосинтеза одинаковых интермедиантов, образующихся по сопряжённым путям биосинтеза. Данная стратегия реализована в работе [132], где сообщается о получении двух генетически сконструированных штаммов бактерий, обозначенных как E. coli DL10 и E. coli DL11, которые несли геномные делеции, исключающие обмен атомов углерода между интермедиаторами в процессе гликолиза и в цикле трикарбоновых кислот.

За счёт использования генетически сконструированных штаммов удалось включить атомы изотопа углерода-13 в молекулы аминокислот с уровнями изотопного обогащения до 95%. Ферменты у штамма E. coli DL10 были инактивированы за счёт мутаций, вследствие чего он ассимилировал в качестве источников углерода и энергии сукцинат и ацетат из ростовой среды, а [1-13C]лактат добавляли в ростовую среду для компенсации метаболических потребностей клетки и для введения атомов изотопа углерода-13 в молекулы аминокислот, синтезируемых в процессе гликолиза.

Другой штамм бактерий E. coli DL11 мог утилизировать немеченую глюкозу в качестве источников углерода и энергии по гликолитическому пути ассимиляции углерода, в то время как [1,4-13C]cукцинат и [1-13C]ацетат добавляли в ростовую среду для того, чтобы стимулировать биосинтез [13C]аминокислот, образующихся по циклу трикарбоновых кислот. Кроме того, в этом случае было необходимо ввести в бактериальный геном дополнительную мутацию, связанную c геном a-кетоглутаратдегидрогеназы, чтобы минимизировать процесс деградации метки в цикле трикарбоновых кислот.

Выделение изотопномеченых молекул аминокислот из белковых гидролизатов микроорганизмов.

Биомасса микроорганизмов, выращенных на средах, содержащих стабильные изотопы, является ценным источником различных изотопномеченых БАС, в том числе аминокислот. При этом наиболее распространённым и традиционным методом препаративного выделения аминокислот из клеточной биомассы является её гидролиз с использованием ферментативных или химических методов и последующая ионообменная хроматография на катионо- и анионообменных смолах (дауэкс, амберлит, пермутит, аминекс, дуолит и др.) [133].

Большое значение при проведении гидролиза белка имеет выбор того или иного гидролизирующего агента, который определяется целью исследования. Ферментативное расщепление протеолитическими ферментами может протекать ступенчато с концов молекулы (экзопептидазами) или путём расщепления специфических отдельных пептидных связей полипептидной цепи (эндопептидазами), причём специфичность зависит от конфигурации, аминокислотной последовательности и конформации белка [134]. Для селективного химического расщепления белков разработано очень много методов [135], среди которых имеется несколько методов расщепления по a-углеродному атому (например, через остатки дегидроаланина).

Щёлочи и кислоты обладают высокой гидролизующей способностью и поэтому их использование приводит к разрушению некоторых аминокислот и к изотопному обмену в триптофане, тирозине и гистидине и в некоторых других аминокислотах. В условиях щелочного гидролиза (4 н. Ba(OH)2 или NaOH, 24 ч, 1100) реакций изотопного обмена водорода на дейтерий практически не наблюдается (исключением является протон (дейтерон) у атома С2 гистидина) [136]. Существенным недостатком щелочного гидролиза, лимитирующим его использование, является значительная рацемизация аминокислот. Поэтому для препаративных целей щелочной гидролиз используется крайне редко, в то время как кислотный - очень широко.

Кислотный гидролиз в стандартных условиях (6 н. НCl или 8 н. Н2SO4, 24 ч, 1100), как известно, приводит к полному разрушению триптофана и частичному разрушению серина, треонина и некоторых других аминокислот [137]. Добавление в реакционную среду фенола [138], тиогликолевой кислоты [139], b-меркаптоэтанола [140], позволяет сохранить до 80-85% триптофана. Кроме этого, в условиях кислотного гидролиза с высокой скоростью протекает изотопный обмен ароматических протонов (дейтеронов) в молекулах триптофана, тирозина и гистидина [141], а также протонов (дейтеронов) при атоме С3 аспарагиновой и С4 глутаминовой кислот [142]. Поэтому для получения реальных данных о биосинтетическом включении дейтерия в белок рекомендуется проводить кислотный гидролиз в присутствии дейтерированных реагентов. Этим способом могут быть выделены и анализированы с использованием ионообменной хроматографии большинство молекул аминокислот в составе гидролизатов белка. При помощи ионообменной хроматографии были препаративно выделены [2H], [13C]- и [15N]аминокислоты из белковых гидролизатов разных природных источников с выходами индивидуальных аминокислот от 77% до 95% и с уровнями изотопного включения, превышающими 95% [143].

Метод выделения молекул аминокислот из гидролизатов биомассы, будучи широко применяем на практике часто требует использования вредных буферных растворов (ацетат, формиат, пиридин и др.), нескольких колонок с последующей рехроматографией для полного выделения чистых аминокислот из гидролизатов биомассы.

Условия ионообменного разделения молекул дейтерий-меченных аминокислот из гидролизатов суммарных белков биомассы микроводоросли Scenedesmus obliquus, состав элюирующих растворителей, время проведения хроматографического анализа и др, были исследованы в работе [144]. Уровни изотопного включения атомов дейтерия в молекулы аминокислот, выделенные из гидролизатов белков Scenedesmus obliquus составили более 98%. Вследствие протекания реакций обратного изотопного (1Н-2Н)-обмена с протонированным растворителем в ходе элюирования молекул дейтеро-аминокислот с сорбента, протоны в b-положении аспарагиновой кислоты и g-положении глутаминовой кислоты были обогащены атомами дейтерия на 90%, т. е. ниже, чем для других молекул аминокислот. Подвижные атомы дейтерия в a-положении имидазольного кольца молекулы гистидина и атомы дейтерия при гетероатоме азота в индольном кольце триптофана также легко обменивались на протоны в составе водных растворителей при выделении аминокислот.

Молекулы [13C]аминокислот были выделены из гидролизатов суммарных белков биомассы штамма метаногенных бактерий Methanobacterium espanolae при росте бактерий на [1-13C]- и [2-13C]ацетате с уровнями включения атомов изотопа углерода-13 в молекулы аминокислот до 90% [145]. Согласно цитируемым там данным, менее 2% случайной изотопной метки в молекулах аминокислот были распределены между атомами углерода в позициях, происходящих из 13С карбоксильной или метильной группы ацетата и еще меньший процент включения метки детектировался в положениях углеродного скелета молекул, образованных из 13СО2.

Большой практический интерес представляет реализация преимуществ препаративной обращенно-фазовой высокоэфективной жидкостной хроматографии (ОФ ВЭЖХ) при разделении оптически чистых изотопно-меченых молекул аминокислот и их N-производных в количествах, необходимых для биоаналитических и синтетических целей [146, 147]. Так, в работе [147] описан метод препаративного разделения индивидуальных молекул аминокислот из различных микробиологических источников с помощью ОФ ВЭЖХ в виде бензилоксикарбонильных производных (N-Cbz производных) аминокислот. Разработанный метод позволяет выделять аминокислоты с высоким выходом (от 67% до 89%) и хроматографической чистотой (96-99%) [147] и может быть использован для выделения [2H]-, [13C]-, [15N] и [18O]аминокислот из белковых гидролизатов различных источников.

ХИМИКО-ФЕРМЕНТАТИВНЫЙ МЕТОД ВКЛЮЧЕНИЯ АТОМОВ СТАБИЛЬНЫХ ИЗОТОПОВ В МОЛЕКУЛЫ.

Другим подходом по включения атомов стабильных изотопов в молекулы аминокислот является химико-ферментативный метод, основанный на комбинации синтетических и ферментативных реакций. Для этого перспективно и экономически оправдано использование препаратов очищенных ферментов и их экстрактов, безклеточных ферментативных систем, а также иммобилизованных ферментов.

Ферментативные реакции осуществляют на иммобилизованных ферментах, например, таких как аланиндегидрогеназе (КФ 1.4.1.1) в присутствии NADH при получении [2H]аланина [148], иммобилизованной на сахарозе фенилаланинаммонийлиазе (КФ 4.3.1.5) и фенилаланингидроксилазе (КФ 1.14.16.1), при получении [2H]фенилаланина [149] и [2H]тирозина [150], триптофансинтазе (КФ 4.2.1.20), при получении [2H]триптофана [151], глутаматдегидрогеназе (КФ 1.4.1.2), при получении [2H]глутаминовой кислоты [152], аспартазы (КФ 4.3.1.1), при получении [2Н]аспарагиновой кислоты [153] и серингидроксиметилазе (КФ 2.5.1.6) при получении [2H]серина [154].

Ферментативный метод используется для препаративного лабораторного и промышленного получения оптически активных аминокислот, благодаря высокой субстратной специфичности ферментов и возможности селективного введения стабильных изотопов по определённым положениям молекул аминокислот. Основными аспектами использования ферментативных систем являются каталитические реакции ассиметрического образования связи на прохиральных субстратах и ферментативное разделение рацематов аминокислот.

Что касается хроматографического разделения рацематов на прохиральных сорбентах, то оно все же недостаточно эффективно для разделения и обеспечивает в лучшем случае больше половины меченого продукта в виде одного из оптических антиподов. Ферментативная стадия часто завершает химический синтез изотопномеченых аналогов аминокислот, причем использование для этих целей интактных клеток или их экстрактов так же эффективно, как использование очищенных ферментов. Однако, субстратная специфичность ферментов, их ограниченная доступность, сложность их выделения и очистки ограничивают их применение для этих целей. Несмотря на то, что ферментативные синтезы преодолевают все вышеперечисленные проблемы, низкие выхода очищенных ферментов лимитируют использование химико-ферментативных реакций. Так, разработанный ферментативный процесс для включения атомов азота-15 в молекулу аланина включает комплексное использование нескольких специфичных ферментов и меченых субстратов и имеет выход по целевому продукту не более 1 г [155]. С другой стороны, методы генной инженерии открывают возможности для получения большинства ферментных препаратов в препаративных количествах.

Включение изотопа азота-15 в молекулы аминокислот связано с использованием [15N]аммонийных или [15N]нитратных солей в качестве источников изотопной 15N-метки [156], в то время как ферментативный метод более эффективен для включения изотопа азота-15 в молекулы [15N]аспарагиновой и [15N]глутаминовой кислот за счёт аминирования a-кетопроизводных аминокислот и в тех случаях, когда необходимы высокие уровни включения изотопа 15N в молекулы [157].

Осуществление различных методов включения атомов изотопа азота-15 в молекулы аминокислот связано с использованием методов газовой подпитки 15NН3 [158], иммобилизацией клеток с последующей активацией носителя 15NН4Cl [159], или с оптимизацией концентраций [15N]предшественников аминокислот в ростовых средах [160]. C использованием вышеперечисленных подходов были получены [15N]аспарагиновая кислота и [15N]аланин с уровнями изотопного включения 15N, превышающими 95% [161]. При этом иммобилизованные клетки E. coli были использованы как источник аспартазы, которая катализирует превращение [15N]фумаровой кислоты и [15N]фумарата в [15N]аспарагиновую кислоту, в то время как для получения [15N]аланина из [15N]аспарагиновой кислоты в качестве источника аспартат-4-декарбоксилазы использовали бактерию Pseudomonas decahee. [15N]глутаминовую кислоту получали за счёт процесса ферментации бактерий Brevibacterium lactofermentum с предшественниками аминокислот в присутствии 15NН4ОН [162].

Для включения атомов изотопа углерода 13С в молекулы аминокислот могут применяться аналогичные ферментативные подходы с применением [13С]глюкозы, однако при проведении ферментативной реакции требуются значительные количества высокообогащённой [13C]глюкозы и поэтому даный метод является слишком дорогим для получения [13C]аминокислот. Кроме того, большая часть глюкозы (до 70%) идёт на обеспечение процесса дыхания клетки, поэтому эффективность мечения молекул БАС изотопом углерода за счёт ферментативного окисления [13С]глюкозы невысокая. Так, уровни изотопного обогащения молекулы [13C]глутамата, полученного ферментативно с участием [13C]глюкозы, были менее 50% [163].

Перспективны также подходы с использованием комбинации химико-ферментативных и биотехнологических способов включения атомов стабильных изотопов в молекулы аминокислот. В работах [164, 165] сообщается о получении более десятка аналогов молекул триптофана, специфически меченных изотопами 2Н, 13C, 15N по индольному кольцу молекулы. Моно-изотопномеченые производные индолов и их 4, 5 и 7-гидроксипроизводные были ферментативно превращены в меченые аналоги триптофана при помощи генетически сконструированного штамма бактерий E. coli, содержащего рекомбинантную плазмиду с триптофановым (Тrp) опероном, который кодировал ряд ферментов, ответственных за биосинтез этой аминокислоты.

Несмотря на многочисленность описанных в современной литературе подходов по включению атомов стабильных изотопов в молекулы БАС, в настоящее время практически не существует способов, которые позволяют получать аминокислоты и белки, меченные 2Н, 13С, 15N и 18O за счет того или иного универсального подхода, хотя химико-ферментативные методы позволяют использовать одну и ту же химико-биохимическую реакцию для получения меченых аминокислот за счет применения различных меченых низкомолекулярных реагентов (субстратов). Включение атомов стабильных изотопов в молекулы удобнее всего проводить с использованием биотехнологических подходов, в то время как селективности включения стабильных изотопов в молекулы БАС можно достичь за счёт применения комбинации синтетических и ферментативных реакций. Выбор метода получения молекул БАС, несущих тот или иной атом изотопа, определяется прежде всего целью исследования.

ЛИТЕРАТУРА.

1. Smith K., Barua J. M., Watt P. W. // Am. J. Physiol. - 1992. - V. 262. - N 3. - P. 1372-1376.

2. McIntosh L. P., Dahlquist F. W. // Quarterly Reviews of Biophysics. - 1990. - V. 23. - N. 1. - P. 1-38.

3. Harbison G. S., Smith S. O., Pardoen J. A., Mulder P. P. J., Lugtenburg J., Herzfeld R., Mathies R., Griffin R. G. // Biochemistry. - 1984. - V. 23. - P. 2662-2667.

4. Ames J. B., Ros M., Raap J., Lugtenburg J., Mathies R. A. // Biochemistry. - 1992. - V. 31. -P. 5328-5335.

5. Fischer M. R., de Groot H. J. M., Raap J., Winkel C., Hoff A. J., Lugtenburg J. // Biochemistry. - 1992. - V. 31. - P. 11038-11043.

6. Lewis A., Marcus M. A., Ehrenberg B., Crespi H. L. // Proc. Nat. Acad Sci. USA. - 1978. - V. 75. - P. 4642-4646.

7. Fesik S. W., Eaton H. L., Olejniczak E. T., Zuiderweg E. R. P., McIntosh L. P., Dahlquist F. W. // J. Am. Chem. Soc. - 1990. - V. 112. - P. 886-888.

8. Motil K. J., Montandon C. M., Thotathuchery M., Garza C. // Am. J. Clin. Nutr. - 1990. - V. 51. - P. 378-384.

9. Young V. R., Yu Y. M., Krempf M. Protein and amino acid turnover using the stable isotopes 15N, 13C, and 2H as probes. New techniques in nutritional research // Eds. R. G. Whitehead, A. J. - Prentice. - Academic Press. - New York, 1990. - V. 9. - P. 17-72.

10. Digenis G. A., Goto R., Chaney J. E., Tamemasa O. // J. Pharm. Sci. - 1982. - V. 71. - P. 816-820.

11. Nelson J. E., Ruo T. I. // Clinica Chemica Acta. - 1988. - V. 175. - P. 59-65.

12. Beaufrere B., Fournier V., Salle B., Putet G. // Am. J. Physiol. - 1992. - V. 263. - N 2. - P. 214-220.

13. Darmaun D., Robert J. J., Bier D. M., Matthews D. E., Young V. R. // Annales-dEndocrinologie. - 1985. - V. 46. - N 4. - P. 355-356.

14. Hruby V. J. // Synth. and Appl. Isot. Label. Compounds. - 1985. - V. 4. - P. 287-292.

15. Viswanatha V., Hruby V. J. // J. Org. Chem. - 1980. - V. 45. - P. 2010-2015.

16. Fesik, S. W., Zuiderweg, E. R. P.// Quarterly Reviewes of Biophysics. - 1990. - V. 23. - N 2. - P. 97-131.

17. Ellman J. A., Volkman B. F., Mendel D. // J. Am. Chem. Soc. - 1992. - V. 114. - P. 7959-7961.

18. Griesinger C., Sorensen O. W., Ernst R. R. // J. Am. Chem. Soc. - 1987. - V. 109. - P. 7227-7228.

19. Zuiderweg E. R. P., McIntosh L. P., Dahlquist F. W., Fesik S. W. // J. Magn. Reson. - 1990. - V. 86. - P. 210-216.

20. Rothschild, K. J., Braiman, M. S., He, Yi-Wu., Marti, T., Khorana, H. G. // J. of Biol. Chem. - 1990. - V. 28. - P. 16985-16991.

21. Haris P. I., Robillard G. T., Vandijk A. A., Chapman D. // Biochemistry. - 1992. - V. 31. - N 27. - P. 6279-6284.

22. Argade, P. V., Rothschild, K. J., Kawamoto, A. H., Herzfeld, J., Herlihy, W. C. // Proc. Natl. Acad. Sci. USA. - 1981. - V. 78. - N 3. - P. 1643-1646.

23. Eisenstein L., Lin S., Dollinger G., Odashima K., Termini J., Konno K., Ding W., Nakanischi K. // J. Am. Chem. Soc. - 1987. - V. 109. - P. 6860-6862.

24. Irving C. S., Nissim I., Lapidot A. // Biomed. Mass. Spectrom. - 1978. - V. 5. - P. 117-122.

25. Raap J., Winkel C., de Wit A. H. M., van Houten A. H. H., Hoff A. J., Lugtenburg J. // Anal. Biochem. - 1990. - V. 191. - P. 9-18.

26. Мосин О. В., Егорова Т. А., Складнев Д. А., Швец B. И. // Биоорганическая химия. - 1996. - Т. 22. - N 10-11. - С. 861-874.

27. Мосин О. В. Разработка методов биотехнологического получения белков, аминокислот и нуклеозидов, меченных 2Н (D) и 13С, с высокими степенями изотопного обогащения. Автореф. дис. канд. хим. наук. М.: МИТХТ им. М. В. Ломоносова. - 1996. - С. 3-23.

28. Мосин О. В., Егорова Т. А., Чеботаев Д. А., Складнев Д. А., Юркевич А. М., Швец В. И. // Биотехнология. - 1996. - N 4. - С. 27-34.

29. LeMaster D. M. // Quarterly Reviews of Biophysics. - 1990. - V. 23. - N. 1. - P. 133-174.

30. Пшеничникова А. Б., Карнаухова Е. Н., Звонкова Е. Н., Швец В. И. // Биоорганическая химия. -1995. - Т. 21. - N 3. - С. 163-178.

31. Raap J., van der Wielen C. M., Lugtenburg J. // Recl. Trav. Chim. Pays-Bas. - 1990. - V. 109. - P. 277-286.

32. Winkel C., Aarts M. W. M., van der Heide F. R., Buitenhuis E. G., Lugtenburg J. // Recl. Trav. Chim. Pays-Bas. - 1989. - V. 108. - P. 139-146.

33. Raap J., Wolthuis W. N. E., Hehenkamp J. J. J., Lugtenburg J. // Amino Acids. - 1995. - V. 8. - P. 171-186.

34. van den Berg E. M. M., Baldew A. U., de Goede A. T. J., Raap J., Lugtenburg J. // Recl. Trav. Chim. Pays-Bas. - 1988. - V. 107. - P. 73-81.

35. van den Berg E. M. M., Richardson E. E., Lugtenburg J. // Synth. Comm. - 1987. - V. 17. - N 10. - P. 1189-1198.

36. Ragnarsson U. // Journal of Peptide Science. - 1995. - V. 3. - P. 149-156.

37. Cappon J. J., van der Walle G. A. M., Verdegem P. J. E., Raap J., Lugtenburg J. // Recl. Trav. Chim. Pays-Bas. - 1992. - V. 111. - P. 517-523.

38. Loftfild R. B., Eigner E. A. // Biochim. Biophys. Acta. - 1966. - V. 130. - P. 449-457.

39. Lugwig S. N., Unkefer C. J. // J. Labelled Compd. Radiopharm. - 1992. - V. 31. P. 95-102.

40. Berger A., Smolarsky M., Kurn N., Bosshard H. R. // J. Org. Chem. - 1973. - V. 38. - P. 457-460.

41. Daub G. H. Syntheses with stable isotopes. Stable Isotopes. Proc. of the 3d Intern. Conference. // Ed. E. R. Klein. - Academic Press. - New York, 1979. - P. 3-10.

42. Jones W. C., Rothgeb T. M., Gurd F. R. N. // J. Biol. Chem. - 1976. - V. 251.- P. 7452-7460.

43. Sternlicht H., Kenyon G. L., Packer E. L., Sinclair J. // J. Am. Chem. Soc. - 1971. - V. 93. - P. 199-208.

44. Giza Y. H., Ressler C. // J. Labelled Compd. - 1969. - V. 5. - P. 142-151.

45. Havranek M., Kopecka-Schadtova H., Veres K. // J. Labelled Compd. - 1970. - V. 6. - P. 345-354.

46. Wilcox M. // Anal. Biochem. - 1974. - V. 59. - P. 436-440.

47. Matthews H. R., Matthews K. S., Opella S. J. // Biochim. et Biophys. Acta. - 1977. - V. 497. - P. 1-13.

48. Bak B., Dambmann C., Nicolaisen F., Pederson E. J., Bhacca E. J. // J. Mol. Spectrosc. - 1968. - V. 26. - P. 78-97.

49. Griffiths, D. V., Feeney, J., Roberts, G. C. K., Burgen, A. S. V. // Biochim. et Biophys. Acta. - 1976. - V. 446. - P. 479-485.

50. Kinsey, R. A., Kintanar, A., Oldfield, E. // J. Biol. Chem. - 1981. - V. 256. - N 17. - P. 9028-9036.

51. Золотарёв Ю. А., Зайцев Д. А., Татур В. Д., Мясоедов Н. Ф. Способ получения равномерно меченных дейтерием оптически активных a-аминокислот: А. с. N 1685903 СССР. - // ВНИИГПЭ. - 1991. - N 39. - С. 92.

52. Золотарёв Ю. А., Козин В. С., Зайцев Д. А., Дорохова Е. Н., Мясоедов Н. Ф. // Докл. АН СССР. - 1989. - Т. 308. - N 5. - С. 1146-1150.

53. Samuel D. Methology of oxygen isotopes. Oxygenases. // Ed. M. Hayaishi. - Academic Press. - New York, 1972. - P. 31-86.

54. Bunton C. A., James D. H., Senior J. B. // J. Chem. Soc. - 1960. - P. 3364-3367.

55. Busujima U. K., Shimiba S., Narita K., Okada S. // Chem. Pharm. Bull. - 1988. - V. 36. - P. 1828-1832.

56. Lapidot A., Kahana Z. E. // Trends Biotechnol. - 1986. - V. 4. - P. 2-4.

57. McIntosh L. P., Griffey R. H., Muchmore D. C., Nielson C. P., Redfield A. G., Dahlquist F. W. // Proc. Natn. Acad. Sci. USA. - 1987. - V. 84. - P. 1244-1248.

58. Westler W. M., Kainosho M., Nagao H., Tomonaga N., Markley J. L. // J. Am. Chem. Soc. - 1988. - V. 110. - P. 4093-4095.

59. Westler W. M., Stockman B. J., Markley J. L., Hosoya Y., Miyake Y., Kainosho M. // J. Am. Chem. Soc. - 1988. - V. 110. - P. 6256-6258.

60. Katz J., Crespi H. L. // Pure Appl. Chem. - 1972. - V. 32. - P. 221-250.

61. Murphy R. C., Anderson F. S., Clay K. L. In vitro and in vivo studies of amino acids labeled with 18O at the carboxyl moiety. Stable Isotopes. Proc. of the 3d Intern. Conference. // Ed. E. R. Klein. - Academic Press. - New York, 1979. - P. 139-146.

62. Cox J., Kyli D., Radmer R. // Trends Biotechnol. - 1988. - V. 6. - P. 279-282.

63. Егорова Т. А., Мосин О. В., Ерёмин С. В., Карнаухова Е. Н., Звонкова Е. Н., Швец В. И. // Биотехнология. - 1993. - N 8. - С. 21-25.

64. Katz J. J., Crespi H. L. // Science. - 1966. - V. 151. - P. 1187-1194.

65. Tran-Dinh S., Fermandjian S., Sala E., Mermet-Bouvier R., Cohen M., Fromageot P. // J. Am. Chem. Soc. - 1974. - V. 96. - P. 1484-1493.

66. Oh B. H., Westler W. M., Darba P., Markley J. L. // Science. - 1988. - V. 240. - P. 908-911.

67. Stockman B. J., Reily M. D., Westler W. M., Ulrich E. L., Markley J. L. // Biochemistry. - 1989. - V. 28. - P. 230-236.

68. Yu L. P., Smith G. M. // Biochemistry. - 1988. - V. 27. - P. 1949-1956.

69. Stockman B. J., Westler W. M., Mooberry E. S., Markley J. L. // Biochemistry. - 1988. - V. 27. - P. 136-142.

70. McInnes A. G., Walter J. A., Wright J. L. C., Vining L. C. 13C NMR biosynthetic studies. Topics in carbon- С13NMR spectroscopy. //Ed. G. D. Levy. - John Wiley & Sons, Inc. - New York, 1976. - V. 2. - P. 125-178.

71. Weber P. L., Muller L. // J. Magn. Res. - 1989. - V. 81. - P. 430-434.

72. Crespi H. L. Biosynthesis and uses of per-deuterated proteins. Synt. and Appl. of Isot. Label. Compd. // Ed. R. R. Muccino. - Elsevier. - Amsterdam, 1986 - P. 111-112.

73. Мосин О. В., Карнаухова Е. Н., Пшеничникова А. Б., Складнев Д. А., Акимова О. Л. // Биотехнология. - 1993. - N 9. - С. 16-20.

74. Daboll H. F., Crespi H. L., Katz J. J. // Biotechnology and Bioengineering. - 1962. - V. 4. - P. 281-297.

75. Crespy H. L. Stable Isotopes in the Life Sciences. // 2nd edn. - International atomic energy agency. - Vienna, 1977. - P. 111-121.

76. Matveev A. V., Mosin O. V., Skladnev D. A., Yurkevich A. M. // Methylotrophic adaptation to highly deuterated substrates. Proc. 8th Int. Symp. Microb. Growth on C1-Compounds. - 27 August 1995. - San Diego. - U.S.A. - P. 80.

77. Мосин О. В., Казаринова Л. А., Преображенская Е. С., Складнев Д. А., Юркевич А. М., Швец В. И. // Биотехнология. - 1996. - N 4. - С. 19-26.

78. Казаринова Л. А., Королькова Н. В., Миронов А. С., Мосин О. В., Складнев Д. А., Юркевич А. М. Способ получения высокодейтерированных нуклеозидов и нуклеотидов. - Заявка РФ N 95118778 от 14.11.1995.

79. Brazier I. L., Ridon B., Falconnet I. B., Charrah V., Benchekrour Y. // Therapie. - 1987. - V. 42. - N 5. - P. 445-450.

80. Sharon N., Grisar V., Newmann H. // Arch. Biochem. Biophys. - 1962. - P. 219-221.

81. Randall M., Kathleen S. M., Stanley J. O. // Biochim. Biophys Acta. - 1977. - V. 497. - P. 1-5.

82. Beeney J., Birdsall B., Oster G., Carr M. D., Karine M. A. // FEBS Lett. - 1990. - V. 272. - Љ 1. - P. 197-199.

83. Umbarger H. E. // Ann. Rev. Biochem. - 1978. - V. 47. - P. 533-606.

84. Bachmann, B. J. // Microbiol. Rev. - 1983. - V. 47. - P. 180-230.

85. Griffey R. H., Redfield A. G., Loomis R. E., Dahlquist F. W. // Biochemistry. - 1985. - V. 24. - P. 817-822.

86. Bachovchin W. M. // Proc. Natl. Acad. Aci. - 1985. - V. 82. - P. 7948-7951.

87. Bachovchin W. M. // Biochemistry. - 1986. - V. 25. - P. 7751-7759.

88. Patel G. B., Roth L. A. // Can. J. Microbiol. - 1978. - V. 24. - P. 1007-1010.

89. Wood H. G., Ragsdale S. W., Pezacka E. // Trends Biochem. Sci. - 1986. - V. 11. - P. 14-18.

90. Daniels L., Sparling R., Sprott G. D. // Biochim. Biophys. Acta. - 1984. - V. 768. - P. 113-163.

91. Fukuzaki S., Nishio N., Nagai S. // Appl. and Environ. Microbiol. - 1990. - V. 56. - P. 3158-3163.

92. Patel G. B., Sprott G. D., Fein J. E. // Int. J. Syst. Bacteriol. - 1990. - V. 40. - P. 79-82.

93. Ekiel I., Smith I. C. P., Sprott G. D. // J. Bacteriol. - 1983. - V. 156. - P. 316-326.

94. Ekiel I., Jarrell K. F., Sprott G. D. // Eur. J. Biochem. - 1985. - V. 149. - P. 437-444.

95. Fuchs G., Stupperich E. // Arch. Microbiol. - 1980. - V. 127. - P. 267-272.

96. Jansen K., Stupperich E., Fuchs G. // Arch. Microbiol. - 1980. - V. 132. - P. 355-364.

97. Bender D. A. Amino Acid Metabolism. // 2nd edn. - New York. - John Wiley & Sons, 1985. - P. 34-52.

98. Charon N. W., Johnson R. C., Peterson D. // J. Bacteriol. - 1974. - V. 117. - P. 203-211.

99. Kisumi M., Komatsubara S., Chibata I. // J. Biochem. - 1977. - V. 82. - P. 95-103.

100. Vollbrecht D. // Biochim. Biophys. Acta. - 1974. - V. 362. - P. 382-389.

101. Conn E. E. // The Shikimic Acid Pathway. Recent Advances in Phytochemistry. - Plenum Press. - New York, 1986. - V. 20. - P. 34-40.

102. McFadden B. A. Assimilation of One-Carbon Compounds. The Bacteria, a Treatise on Structure and Function. // Ed. L. N. Ornston. - Academic Press. - New York, 1978. - V. 4. - P. 219-290.

103. Никонова Е. С., Доронина Н. В., Троценко Ю. А. // Приклад. биохим. и микробиол. - 1986. - Т. 22. - С. 557-561.

104. Hanson R. S., Dillingham R., Olson P., Lee G. H., et all. Production of L-lysine and some other amino acids by mutants of B. methanolicus. Microbial Growth on C1 Compounds. // Ed. M. E. Lindstrom. - Kluwer Academic Publishers, 1996. - P. 227-236.

105. Anthony C. Bacterial oxidation of methane and methanol. Advances in Microbial Physiology. // Eds. Rose A. H., Tempest D. W. - Academic Press. - New York, 1986. - V. 27. - P. 113-203.

106. Higgins I. J., Quayle J. R. // Biochemical Journal. - 1970. - V. 118. - P. 201-210.

107. Goldberg I. // Eur. J. Biochem. - 1976. - V. 63. - P. 233-239.

108. Dalton H. // Advances in Applied Microbiology. - 1980. - V. 26. - P. 71-80.

109. Colby J., Dalton H., Whittenbury R. // Ann. Rev. Microbiol. - 1979. - V. 33. - P. 481-517.

110. Kemp M. B., Quayle J. R. // Biochem J. - 1967. - V. 102. - P. 94-102.

111. Mosin O. V., Karnaukhova E. N., Skladnev D. A. // Application of methylotrophic bacteria for preparation of stable isotope labelled amino acids. Proc. 7th Int. Symp. Genetics of Industrial Microorganisms. - Quebec. Canada. - 26 June 1994. - P. 163.

112. Mosin O. V., Karnaukhova E. N., Skladnev D. A. // Preparation of 2H- and 13C-amino acids via bioconvertion of C1-substrates. Proc 8th Int. Symp. Microb. Growth on C1-Compounds. - San Diego. U.S.A. - 27 August 1995. - P. 80.

113. Мосин О. В., Карнаухова Е. Н., Складнев Д. А., Акимова О. Л., Цыганков Д. Ю. Штамм Brevibacterium methylicum - продуцент униформно меченой дейтерием аминокислоты - L-фенилаланина. Заявка РФ N 93055824. // ВНИИГПЭ. - 1993. - N 94. - С. 3-4.

114. Karnaukhova, E. N., Reshetova, O. S., Semenov, S. Y., Skladnev, D. A., and Tsygankov, Y. D. // Amino Acids. - 1994. - V. 6. - P. 165-176.

115. Karnaukhova E. N., Mosin O. V., Reshetova O. S. // Amino Acids. - 1993. - V. 5. - P. 125.

116. Складнев Д. А., Мосин О. В., Егорова Т. А., Ерёмин С. В., Швец В. И. // Биотехнология. - 1996. - N 5. - С. 14-20.

117. Мосин О. В., Складнев Д. А., Егорова Т. А., Юркевич А. М., Швец В. И. // Биотехнология. - 1996. - N 3. - С. 3-12.

118. Muchmore D. C., McIntosh L. P., Russel C. B., Anderson E. E., Dahlquist F. W. // Meth. Enzymol. - 1990. - V. 77. - P. 346-354.

119. DeVault J. D., Hughes K. J., Johnson O. A., Narang S. K. // Biotechnology. - 1996. - V. 14. - P. 46-49.

120. Torchia D. A., Sparks S. W., Bax A. // Biochemistry. - 1989. - V. 28. - P. 5509-5524.

121. Marion D., Kay L. E., Sparks S. W., Torchia D. A., Bax A. // J. Am. Chem. Soc. - 1989. - V. 3. - P. 1515-1517.

122. Senn H., Euguster A., Otting G., Suter F., Wuthrich K. // Eur. Biophys. J. - 1987. - V. 14. - P. 301-313.

123. LeMaster D. M., Richards F. M. // Biochemistry. - 1985. - V. 24. - P. 7263-7268.

124. Lapidot, A., Irving, C. S. // J. Am. Chem. Soc. - 1977. - V. 99. - P. 5488-5493.

125. Bachovchin W. M., Roberts J. D. // J. Am. Chem. Soc. - 1978. - V. 100. - P. 8041-8046.

126. Kainosho M., Tsuji T. // Biochemistry. - 1982. - V. 21. - P. 6273-6279.

127. Leighton P., Lu P // Biochemistry. - 1987. - V. 26. - P. 7262-7271.

128. Campbell B. S., Papastavros M. Z., McCormick F., Redfield A. G. // Proc. Natl. Acad. Sci. USA. - 1989. - V. 86. - P. 817-820.

129. Skladnev D. A., Tsygankov Y. D. // Conversion of stable isotope labeled methanol to components of bacterial biomass. Proc. 6 th Eur. Conf. on Biomass for Energy. - Athens. - Greece. - 22-26 April. - 1991. - P. 234.

130. Fesik S. W., Eaton H. L., Olejniczak E. T., Zuiderweg E. R. P., McIntosh L. P., Dahlquist F. W. // J. Am. Chem. Soc. - 1990. - V. 112. - P. 886-888.

131. Gelfand D. H., Steinberg R. A. // J. Bacteriol. - 1977. - V. 130. - P. 429-440.

132. LeMaster D. M., Cronan J. E. // J. of Biological Chemistry. - 1982. - V. 257. - N 3. - P. 1224-1230.

133. Ниедервайзер А., Патаки Д. Новые методы анализа аминокислот, пептидов и белков. - М.:Мир, 1974. - С. 20-73.

134. Овчинников Ю. А. Биоорганическая химия. - М.: Просвещение, 1987. - С. 41-48

135. Spande T. F., Witkop B., Degani Y., Patchornik A. // Adv. Protein Chem. - 1970. - V. 24. - P. 97-260.

136. Hill R. L. // Adv. Protein Chem. - 1965. - V. 20. - P. 37-107.

137. Moore S. Chemistry and Biology of Peptides // Ed. J. Meienhofer. - Ann Arbor Sci. Publ. - Ann Arbor. - Michigan, 1972. - P. 629-653.

138. Muramoto K., Kamiya H. // Anal. Biochem. - 1990. - V. 189. - P. 223-230.

139. Matsubara H., Sasaki R. M. // Biochim. Biophys. Res. Com. - 1969. - V. 35. - P. 175-177.

140. Ng L. T., Pascaud A., Pascaud M. // Anal. Biochem. - 1987. - V. 167. - P. 47-52.

141. Пшеничникова А. Б., Карнаухова Е. Н., Мицнер Б. И. // Ж. общ. химии. - 1993. - Т. 63. - Вып. 5. - С. 1034-1040.

142. Bak B., Led J. J., Pederson E. J. // Acta Chem. Scand. - 969. - V. 23. - P. 3051-3054.

143. LeMaster D. L., Richards F. M. // Anal. Biochem. - 1982. - V. 122. - P. 238-247.

144. Cohen J. S., Putter I. // Biochim. et Biophys. Acta. - 1970. - V. 222. - P. 515-520.

145. Patel G. B., Sprott G. D., Ekiel I. // Appl. Environ. Microbiol. - 1993. - P. 1099-1103.

146. Егорова Т. А., Еремин С.В ,Мицнер Б.И, Звонкова Е.. Н., Швец В.И. Биотехнология. - 1993. - N 5. - С. 32-36.

147. Egorova T. A., Eremin S. V., Mitsner B. I., Zvonkova E. N., Shvets V. I. // J. of Chromatography B. - 1995. - V. 665. - P. 53-62.

148. Prescan E., Ivanof A., Mocanu A., Palibroda N., Bologa M., Gorun V., Barzu O. // Microbiol. Technol. - 1987. - V. 9. - P. 663-665.

149. Hadener A., Tamm C. // J. Labelled Compounds and Radiopharm. - 1987. - V. 24. - P. 1291-1306.

150. Walker T. E., Matheny C. // J. Org. Chem. - 1986. - V. 51. - P. 1175-1179.

151. Fuganti C., Ghiringhelli D., Giangrasso D., Grasselli P. // J. Chem. Soc. Comm. - 1974. - P. 726-730.

152. Сappon J. J., Baart J., van der Walle G. A. M., Raap J., Lugtenburg J. // Recl. Trav. Chim. Pays-Bas. - 1991. - V. 110. - P. 158-166.

153. Field S. J., Young D. W. // J. Chem. Soc. Chem. Communs. - 1979. - P. 1163-1165.

154. Jordan P. H., Akhtar H. // J. Biochem. - 1970. - V. 116. - P. 277-286.

155. Greenway W., Whatley F. R., Ward S. // Febs Lett. - 1977. - V. 81. - P. 286-288.

156. Yamada S., Nabe K., Izuo N., Nakamichi K., Chibata I. // Appl. Environ. Microbiol. - 1981. - V. 42. - P. 773-778.

157. Hirose Y., Shibai H. // Biotechnol. Bioeng. - 1980. - V. 22. - Suppl. 1. - P. 111-125.

158. Nabe K., Ujimaru T., Izuo N., Yamada S., Chibata I. // Appl. Environ. Microbiol. - 1980. - V. 40. - P. 19-24.

159. Chibata I., Tosa T., Sato T. Microbial technology. // Ed. H. J. Peppler. - 2nd ed. Academic Press, 1979. - V. 11. - P. 433-461.

160. Kahana Z. E., Lapidot A. Proc. 3d European Congress of Biotechnology. - Verlag-Chemie. - Weinheim, 1984. - V. 1. - P. 439-443.

161. Kahana Z. E., Lapidot A. // Anal. Biochem. - 1982. - V. 126. - P. 389-393.

162. Kahana Z. E., Lapidot A. // Anal. Biochem. - 1983. - V. 132. - P. 160-164.

163. Kahana Z. E., Lapidot A. Adaptation of biotechnological processes for preparation of compounds labeled with stable isotopes. Synthesis and Applications of Isot. Label. Compounds. // Ed. R. R. Muccino. - Elsevier, 1986. - P. 511-512.

164. van der Berg E. M. M.. Synthesis of isotopomers of L-tryptophan using genetically modified Escherichia coli bacteria. - Ph. D. Dissertation. - University of Leiden. - The Netherlands, 1989. - P. 1-123.

165. van der Berg E. M. M., van Liemt J. H., Willem B. S. // Recl. Trav. Chim. Pays-Bas. - 1989. - V. 108. - N 9. - P. 304-313.


 Ваша оценка:

Связаться с программистом сайта.

Новые книги авторов СИ, вышедшие из печати:
Э.Бланк "Пленница чужого мира" О.Копылова "Невеста звездного принца" А.Позин "Меч Тамерлана.Крестьянский сын,дворянская дочь"

Как попасть в этoт список
Сайт - "Художники" .. || .. Доска об'явлений "Книги"