Полюх Алексей Леонидович : другие произведения.

Искусственные внешние ресурсы. Часть 4. Гравитационные электростанции в Солнечной системе. Технология получения и использования Луца

Самиздат: [Регистрация] [Найти] [Рейтинги] [Обсуждения] [Новинки] [Обзоры] [Помощь|Техвопросы]
Ссылки:


 Ваша оценка:
  • Аннотация:
    Луц - это короткое название, которое мы используем в данном тексте для сокращения фразы: "высокоскоростные носители кинетической энергии". Это то волшебное вещество, которое позволит наконец начать освоение космоса. И в которое жители Плюка переработали океаны своей планеты... А где его взять, и что он может дать - читайте:) ... "...И пусть никто не уйдёт обиженным..."


   Часть 4.
  
  
   IV. Гравитационные манёвры. Удельный импульс топлива 50-100 км/с.
   Гравитационные электростанции в Солнечной системе.
  
  
  
   1. Некоторые дополнительные вопросы
   В части 3 мы уже рассмотрели, что такое "упругие" и "неупругие" кинетические двигатели - твердотельные, газовые и магнитно-плазменные.
   На всякий случай напомню, что все они работают на "искусственных внешних ресурсах" - проще говоря, используют специально подготовленные тела, которые прилетают в точку встречи с ракетой извне; в частности, это могут быть микро снаряды, выпущенные из пушки, хотя не обязательно. Эти тела могут быть неподвижны в какой-то системе отсчёта, важна только относительная скорость встречи ракеты и снаряда.
   "Упругие" варианты лучше, поскольку ракета вообще не тратит собственное топливо на разгон. Но, они могут разгонять ракету только до тех пор, пока скорость снаряда больше скорости ракеты не менее чем на 2-3%.
   "Неупругие" (то есть с затратой собственного топлива для получения импульса, за счёт энергии, полученной извне) - могут работать при любых скоростях, но ракета при этом теряет массу, хотя и медленнее, чем по формуле Циолковского. Удельный импульс таких двигателей непостоянен, и всегда равен 30-35% от разности скоростей снаряда и ракеты. В частности, если ракета летит достаточно быстро, то внешние тела могут иметь небольшую скорость, важна только разность скоростей. Если скорость ракеты относительно (летящего ей навстречу или неподвижного) снаряда равна 1000 км/с, то удельный импульс такого двигателя будет 300 км/с.
   Дальше мы посмотрим, где можно бесплатно получить такую начальную скорость, но сначала надо обсудить пару технических вопросов.
  
  
  
   1.1 Регулировка тяги газового упруго-кинетического двигателя.
   Как попасть микро снарядом в сопло двигателя, мы рассмотрели. Но, помимо этого, необходимо иметь возможность регулировать вектор тяги двигателя в некоторых пределах (хотя бы на 2-3% по величине и 1-2 градуса по направлению), для корректировки положения и скорости самой ракеты.
   Наиболее быстрый способ это делать - за счёт изменения геометрии внешней части сопла. Если сопло будет иметь подвижные "лепестки", составляющие 10-20% от общей площади сопла, то этого будет достаточно для мгновенной регулировки вектора тяги в небольших пределах. В случае магнитного сопла для этого придётся менять конфигурацию поля, или смещать и поворачивать всё сопло целиком или его части.
   Для регулировки тяги в более значительных пределах, или полного выключения двигателя, также есть несколько разных способов.
   Во-первых, можно изменять расстояние от двигателя, на котором происходит подрыв снаряда и превращение его в газовую струю. Чем больше это расстояние, тем меньше будет тяга.
   Во-вторых, можно полностью выключить двигатель, если подрывать снаряды на очень большом расстоянии - десятки-сотни метров от ракеты. Если надо выключить двигатель на длительное время, то ракету можно увести в сторону от траектории снарядов на несколько метров; для более кратковременного выключения двигателя можно предусмотреть механизм, позволяющий "пропускать" снаряды сквозь двигатель.
   В более сложных вариантах в управлении тягой могут участвовать ближайшие станции корректировки траекторий снарядов. Это более медленные способы, так как время отклика системы на изменение параметров будет составлять несколько секунд или минут, но таким образом можно не только произвольно регулировать ускорение одной ракеты, но и распределять снаряды из одного исходного потока по нескольким независимым рабочим потокам, направляемым к нескольким одновременно ускоряемым ракетам, что позволит управлять целой транспортной сетью.
   Если будет один очень мощный, и при этом дешёвый, источник снарядов с большими скоростями и энергией (порядка 1000 км/с), то далее их можно распределять на несколько потоков, направляемых разным потребителям. В том числе, потребителями могут быть не только ускоряемые аппараты, но и энергетические установки, которые будут при этом иметь намного лучшие параметры по мощности и массе по сравнению с любыми другими источниками энергии, включая ядерные. Дальше мы покажем, а где же взять очень много снарядов со скоростью 1000 км/с, и почти бесплатно.
  
  
  
   1.2 Размер сопла двигателя ("парашютный" двигатель).
   Что касается размеров самого сопла двигателя, то раньше мы рассматривали максимально компактный вариант, с диаметром в десятки сантиметров, и показали, что даже в этом случае в него можно попасть.
   Но, если экономить на корректировочных станциях, то можно снизить точность попадания за счёт увеличения диаметра "сопла" до сотен метров. В данном случае это будет скорее парашют из тонкой прочной плёнки, надуваемый потоком газа. При этом снаряды придётся испарять на расстоянии порядка километра от сопла. Для плазменного сопла это тоже возможно, если использовать тонкие сверхпроводящие кольца большого диаметра. При этом геометрия сопла, с точки зрения работы газа при расширении, может быть довольно "плохой", зато большой размер. При массе в 1 тонну такое сопло может иметь диаметр более километра.
   В принципе, такой подход позволяет на небольшом расстоянии (порядка десяти тысяч километров) обойтись вообще без корректировочных станций, что упрощает разработку на начальном этапе. С другой стороны, это позволит распределить тепловую и радиационную нагрузку от излучения рабочего тела на большую площадь, что может быть актуально для двигателей с очень большими энергетическими потоками и температурами (для межзвёздных перелётов), тяга которых будет ограничена именно мощностью теплового рентгеновского излучения рабочего тела.
  
  
  
   1.3 Двигатель в качестве генератора.
   До сих пор мы рассматривали кинетический способ передачи энергии на расстояние в основном как источник тягового усилия для разгона ракет, то есть в качестве собственно двигателя. Но такой способ передачи энергии можно использовать и для других целей. Особенно это может быть актуально, если, каким-то чудом, найдётся бесплатный источник энергии для разгона снарядов до больших скоростей.
   В принципе, любой плазменно-магнитный двигатель можно использовать как МГД-генератор для снабжения энергией бортовых устройств. Но можно сделать и устройство, которое будет только преобразовывать кинетическую энергию снарядов или газа в иную форму. Функции двигателя такое устройство может не выполнять совсем, или они могут быть второстепенными, например, для компенсации избыточного импульса, который снаряды приносят помимо энергии.
   Например, околоземная орбитальная станция может принимать снаряды, прилетающие откуда-то из далёкого далёка со скоростью 500-1000 км/с, утилизировать их энергию, а избыточный импульс компенсировать за счёт небольшого количества дополнительного топлива, поставляемого с Земли (мы уже знаем, как это сделать). На самом деле, избыточный импульс за время полного оборота вокруг Земли будет вообще равен нулю (ну то есть он не будет равен нулю. Он просто целиком передастся планете Земля).
   При скорости снарядов 1000 км/с, удельная плотность энергии будет всего в 100 раз меньше, чем содержится в той же массе урана-235.
   Но такой энергетический реактор будет на порядки легче и компактнее ядерного при равной мощности. Он не имеет пределов масштабирования, от 1 грамма весу и 1 вата мощности, до планетарного. Нет жёстких излучений, нейтронов, а тепловое излучение (хоть оно и рентгеновское в диапазоне 10 кЭв) можно уменьшить в тысячи раз при уменьшении плотности газа. Для ядерных реакторов это сделать нельзя.
   Расстояние от источника энергии до потребителей может быть очень большим, что позволяет передавать энергию на миллиарды километров.
   Правда, кто-то скажет - это же только передача энергии из одного места в другое, а не генерация. Сколько энергии потрачено на разгон снаряда - столько потом и можно получить в таком "реакторе", и не больше.
   На это мы ответим, что всё зависит от того, кто, и где, будет оплачивать исходный разгон снарядов. Мы просто будем передавать энергию из такого места, где она уже есть, и очень много.
   Правда, этот таинственный и волшебный источник бесплатной кинетической энергии для снарядов имеет существенное ограничение: скорость снарядов не может быть больше 1000 км/с. Он так устроен.
   Если нам потребуются энергетические установки на больших расстояниях от Земли, а тем более энергетическая инфраструктура для разгона межзвёздных кораблей до субсветовых скоростей, то там всё же придётся использовать другие источники энергии для первичного разгона снарядов, в том числе ядерные. В частности, возможна модификация энергетического реактора, в котором основное количество энергии получается за счёт ядерных реакций деления или синтеза, но предварительное сжатие или нагрев рабочего вещества осуществляется за счёт энергии столкновения снаряда с мишенью. Такие реакторы не имеют надобности в громоздких устройствах для накопления энергии, используемой для сжатия мишени, и потому могут быть в сотни раз меньше и легче полностью автономных взрывных ядерных реакторов.
   Но я категорически против прямого использования какого-либо вида ядерной энергии непосредственно в двигателе ракеты, особенно для межзвёздных полётов. Не из-за экологических вопросов, которые можно решить, а из-за того, что такой двигатель будет иметь очень серьёзные недостатки по сравнению с плазменно-кинетическим двигателем на внешних ресурсах, из-за чего допустимые мощность и ускорение будут меньше на 2-3 порядка. Кроме того, сложность и стоимость ядерного двигателя выше.
   Другое дело - использовать ядерные микро реакторы с внешней энергией сжатия мишени в качестве стационарных источников энергии на трассах разгона межзвёздных кораблей, и других вспомогательных целей.
  
  
  
   1.4 Экологические вопросы
   Двигатели на искусственных внешних ресурсах - практически самое чистое и безопасное, что вообще можно придумать для освоения космоса, по сравнению не только с ядерными и изотопными, но также и химическими. Даже "чистые" солнечные батареи надо где-то делать, и пока их делают на Земле, это вовсе не так уж чисто и безвредно.
   В нашем двигателе используется водород и немного лития. Никаких излучений, кроме теплового, но его очень мало. Конструкция двигателя на грани того предела, до которого можно упростить что-либо. Практически, это может быть лист жести. Простота конструкции - это снижение расходов и сложности изготовления, что тоже косвенно связано с экологией, в конце концов. (Ведь каждый понимает, что если "итальянские инженеры сделали автомобиль стоимостью в полмиллиона, настолько экологически чистый, что его можно лизать" - то они, эти инженеры, год ездили на своих автомобилях, делать этот сверхчистый. И сожгли сто тонн солярки. И выбросили отходы в атмосферу. И это лишь небольшая часть реальной экологической нагрузки, которую дополнительно создал именно этот конкретный "чистый" автомобиль, при правильном учёте всех эффектов, связанных с его созданием и полным жизненным циклом).
   Непосредственно для планеты Земля, её атмосферы и биосферы кинетические двигатели никакой экологической нагрузки не создадут.
   Но рано или поздно человечеству придётся рассматривать такое понятие, как "экология космического пространства", и там всё не так просто.
   Любые химические, лучевые, радиационные и другие загрязнения околоземного и межпланетного пространства, да и просто мусор, могут накапливаться неожиданно быстро, и при активном освоении даже ближайших планет это надо учитывать.
   Например, очень высокая башня на поверхности Земли, или большой аэростат на высоте более 15 км, могут создавать дополнительный радиационный фон на поверхности, и изменить распределение атмосферных электрических потенциалов. И это полностью пассивные объекты.
   Если же космические объекты используют двигатели и энергетические установки, то влияние в масштабах планеты неизбежно.
   Один старт с Земли корабля с "грязным" ядерным двигателем может испортить не только атмосферу, но и околоземное пространство на десятки тысяч километров, и на десятилетия.
   Даже работа "чистых" ионных и плазменных двигателей оставляет свой след в атмосфере и магнитосфере Земли, как и химических ракет. Даже если реактивный двигатель будет включен за сто тысяч километров от Земли, большая часть продуктов его работы полетит обратно к Земле или в ближайшее околоземное пространство, задержится в магнитосфере, и в конечном итоге всё это окажется в атмосфере.
   "мячиковый" упруго-кинетический двигатель в этом смысле идеален, поскольку вообще не производит газообразных продуктов. Правда, надо следить за тем, чтобы снаряды после использования либо упали обратно в атмосферу и красиво сгорели в ней (за это можно даже брать деньги, метеоритный дождь по заказу в качестве фейерверка); либо, при скорости более II космической, покинули околоземное пространство, иначе можно очень быстро сделать ближний космос весьма опасным. В интервале скоростей ракеты от 9 до 12 км/с "мячиковый" двигатель будет потенциальным источником метеоритного мусора.
   Газовый упруго-кинетический двигатель при скорости до 100 км/с производит только безвредный нейтральный водород. При скорости более 100 км/с продукты работы двигателя будут представлять собой довольно горячую плазму, потенциально опасную для космических объектов; но струя этой плазмы будет следовать за ракетой, с несколько меньшей скоростью, за пределы околоземного пространства. Единственная опасность, которая в этом заключается, состоит в действии мощной струи плазмы на геомагнитное поле, что может вызвать его колебания, и нуждается в изучении.
   Однако при торможении аппаратов, летящих с очень большими скоростями, особенно после межзвёздного перелёта, ситуация может быть намного опаснее, так как струя плазмы будет направлена в сторону цели.
   Кроме того, "потерянные" по той или иной причине снаряды, а также не до конца испарившиеся фрагменты их оболочек могут представлять прямую опасность как для самой ракеты и инфраструктуры на трассе ускорения, так и для других объектов. Поэтому ничего терять не нужно, либо гарантировать, что всё это улетит по крайней мере за пределы околоземного пространства, или вообще из Солнечной системы, либо испарится.
  
  
   1.5 Юридические аспекты использования кинетических двигателей
   В принципе, западная законотворческая традиция позволяет запретить всё, что угодно - если есть оплаченный заказ. Но до тех пор, пока вещь не существует и параметры её не известны, её, стало быть, и запретить нельзя; юристы в такой ситуации напоминают бабушку, которая не может перебежать дорогу перед машиной, пока она стоит, потому что нельзя рассчитать вектор скорости...
   Газовая модификация упруго-кинетического двигателя при удельном импульсе до 40 км/с производит только нейтральный водород, которого в Солнечной системе много, и запретить его применение сложно. Тем не менее, надо иметь в виду возможность такой попытки, и вести разработку сразу нескольких вариантов, не афишируя их точные параметры до окончания разработки, чтобы потом можно было быстро перейти на резервный вариант, в случае запрета на использование какого-нибудь второстепенного элемента применяемого технического решения.
   Например, опасными могут оказаться лазеры корректировочных станций ("они могут ослепить стаю диких гусей в ясную ночь"); эманации сублимируемого вещества (ионы лития нарушат радиосвязь); риск потери снаряда и его попадания не туда (даже если снаряд в случае промаха покинет Солнечную систему); свечение в вечернем небе яркой "звезды" работающего двигателя межпланетного корабля может напугать маленьких детей, или сбить с курса мигрирующих цикад; религиозные принципы какой-то общины могут прямо запрещать использование водорода; и на каждый параметр технического решения, когда они уже будут известны, можно найти повод для запрета. Поэтому техническое решение в целом должно быть гибким, и допускать замену одного или нескольких параметров без критического ухудшения результата.
   Вместо оптических лазеров - можно применить инфракрасные, поток электронов или газа, облако микро пылинок, сеть из нанонитей, или силовые поля. Вместо металлической оболочки снарядов - лёд, полиэтилен или графит; водород можно заменить водой... каждое такое изменение может ухудшить конечный результат, но необходимость в этом может возникнуть.
   Конечно, если ракету будет запускать НАСА, то всё будет иначе. Сейчас 30 кг плутония-246 в одном космическом аппарате не считают опасным количеством. Грязный ядерный двигатель, использующий уран в составе реактивной струи, тоже вполне могут разрешить. Предела нет.
  
   К счастью, наш двигатель прямо не попадает под запрет на "любые взрывы в космосе", поскольку там нет столкновения плотных тел и их взрыва - снаряд сначала испаряется, и только потом струи газа взаимодействуют между собой и с соплом, так что максимальное давление может быть менее 1 атмосферы. При необходимости режим работы двигателя можно сделать постоянным, а не прерывистым, с постоянным давлением в сопле.
   Испарение снаряда тоже можно осуществлять без взрыва, например, распыляя рабочее тело в виде порошка, и затем постепенно испаряя микро частицы в струе встречного газа, вообще без каких-либо намёков на взрыв (ведь, например, спички не "взрываются", иначе мы все давно погибли бы, правда). Температуру газа можно снизить до 3-4 тысяч градусов.
   При температуре ниже 10.000 К ионизирующих излучений не будет, а интенсивность оптического и инфракрасного излучения можно уменьшить.
   В общем, надо иметь в запасе десяток альтернативных вариантов, с максимально далёким разбросом всех параметров технического решения, на случай попытки юридического саботажа разработки и использования.
  
  
  
  
   1.6 Кассетная доставка снарядов
   До сих пор мы рассматривали способы корректировки полёта одиночного снаряда, и нашли что это не слишком сложно. Но, для очень, очень больших расстояний - хотя бы вот, от Юпитера до Земли или Солнца, а тем более для доставки топлива за орбиту Плутона и дальше - понадобится всё же много корректировочных станций, и это не очень удобно.
   Если снаряды разгонять по одному, один за другим - например, с помощью пушки, или цепочки лазерных или магнитных разгонных устройств - то тут, пожалуй, сложно поступить как-то иначе. Хотя, при большом желании, даже и в этом случае, всё же можно потом собрать вместе некоторое количество микро снарядов, первоначально выпущенных поодиночке, упаковать их в кассету, имеющую собственные автономные средства навигации и маневрирования, и затем, на большей части пути, управлять полётом только этого одного объекта, что проще и почти не требует вспомогательного оборудования в промежуточных точках.
   Но возможны также ситуации, и в этой части мы будем рассматривать в основном их, когда снаряды разгоняются без пушки, как то иначе, и сразу большой кассетой, так что их удобно большую часть пути везти вместе, и только в конце распределить по одному на некотором отрезке траектории, чтобы они взаимодействовали с целью в нужной последовательности. Например, такая ситуация будет, если для разгона снарядов используется ракета, или если контейнер со снарядами просто сбросить вниз с большой высоты в гравитационном поле массивного тела. Возможна и такая конструкция пушки или катапульты, особенно для очень больших скоростей при межзвёздных перелётах, когда будет удобнее разгонять снаряды не по одному, а кассетой определённой массы, порядка нескольких килограммов.
   В таком случае на большей части траектории надо будет управлять полётом небольших автономных аппаратов, которые имеют собственные средства маневрирования, и роль стационарных навигационных станций сведётся к передаче сигналов управления. При этом точность траектории полёта в промежуточных пунктах может быть снижена на 6-10 порядков, до тысяч километров, так как точная фокусировка роя понадобится только в непосредственной близости от цели-потребителя.
   Финальная корректировка траекторий снарядов может осуществляться как автономно, так и с помощью подвижных или стационарных станций. В частности, сам контейнер со снарядами может иметь активные средства для их последующего распределения по траектории, например газовую или магнитную пушку с небольшой относительной скоростью вылета снарядов, и средства для измерения и корректировки их скорости.
   Например, от контейнера (ракеты) со снарядами задолго перед их выпуском могут отделиться несколько лазерных корректировочных станций (колец) описанного ранее типа, имеющих собственные двигатели, позволяющие им со скоростью несколько км/с удалиться вперёд вдоль траектории на сотни-тысячи километров, сохраняя точное взаимное расположение и связь со стационарными навигационными станциями.
   Вариантов реализации деталей такой системы может быть много, и мы не будем здесь в них углубляться. Для межпланетной доставки топлива и энергии такой вариант может быть предпочтительнее стрельбы одиночными снарядами, так как можно снизить точность траектории в промежуточных точках и сильно сократить число корректировочных станций, что упрощает управление системой и снижает риск промахов.
   Для доставки на очень большие расстояния, и тем более снабжения топливом и энергией межзвёздных кораблей, контейнерный вариант доставки остаётся единственным, так как одиночные снаряды не только намного сложнее контролировать во время полёта, но и труднее защитить от неблагоприятных воздействий внешней среды.
   Мы дальше не будем уточнять, одиночные снаряды используются для доставки топлива, в кассетах, контейнерах или по какой-то более сложной схеме, полагая, что оптимальный вариант будет определяться расстоянием, имеющимися техническими возможностями и целью. Конечный результат во всех случаях зависит в основном от скорости и энергии.
  
  
  
   1.7 Другие типы термо-кинетических двигателей
   В III части мы рассмотрели 2 типа новых ракетных двигателей:
   Упруго-кинетический - уже предлагался до нас в твердотельном варианте ("разгонять ракету металлическими шариками"); мы предложили газовый упруго-кинетический двигатель, который позволит разгонять ракету более эффективно, при удельном импульсе от 10 км/с до сотен и тысяч.
   Крайне полезной особенностью упруго-кинетических двигателей является то, что расход бортового запаса топлива равен 0. Но есть принципиальное ограничение: чтобы разгонять ракету, снаряд её должен догонять, со скоростью хотя бы на 2-3% большей.
   Мы также предложили модификацию двигателя, которая обходит это ограничение (я полагаю, что этот тип двигателя предложен впервые нами и является полностью оригинальным изобретением). Мы показали, что при скорости снаряда, много меньшей, чем скорость ракеты, или даже при неподвижных "снарядах" (в роли которых могут использоваться капсулы с топливом, естественные внешние тела или газ), можно, тем не менее, разгонять ракету, но, правда, уже с дополнительной затратой топлива из бортового запаса. При этом удельный импульс (в расчёте на массу топлива затрачиваемого ракетой) равен 30-35% от текущей разности скоростей.
   Мы назвали этот последний тип двигателя "термо-кинетическим", в отличие от "упруго-кинетического", поскольку дополнительный импульс получается в результате совершения работы горячего газа или плазмы, нагреваемого за счёт уменьшения запаса кинетической энергии при столкновении двух тел (обычно газообразных).
   Но, кроме рассмотренного основного варианта, данный тип двигателя (использующий нагрев газа за счёт кинетической энергии) может иметь несколько других модификаций, которые будут отличаться главным образом способом подачи рабочего тела в точку взаимодействия, а также деталями взаимодействия между газом (плазмой) и агентом (магнитным полем), используемым для передачи силового взаимодействия.
   В основном варианте термо-кинетического двигателя ракета несёт на борту половину всего запаса топлива в виде мишеней, с которыми сталкиваются внешние тела - снаряды. (В частности, для уменьшения давления плазмы и радиационного нагрева двигателя, оба тела ещё за некоторое время перед столкновением могут превращаться в газ).
   Но возможны и такие модификации, когда оба сталкивающихся тела прилетают в точку встречи с ракетой извне, с разными скоростями, отличными от скорости самой ракеты, и направленными либо вдоль траектории ракеты, либо под большими углами к ней. В действительности, предыстория прилёта сталкивающихся тел в точку рандеву не важна. На конечный результат (импульс, переданный ракете) влияют только начальная скорость центра масс получившегося газа относительно ракеты в начальный момент после столкновения, и конечная скорость того же центра масс газа, что в свою очередь зависит также от начальной и конечной температуры, то есть от затраченной кинетической энергии.
   Такие варианты, с внешней подачей как снарядов, так и мишеней (или протяжённой мишенью в виде цепочки зарядов), будут работоспособны в ограниченном диапазоне скоростей. В отличие от основного варианта термо-кинетического двигателя, удельный импульс которого растёт с ростом скорости ракеты, здесь он будет, наоборот, уменьшаться, по мере того, как скорость ракеты становится намного больше скорости центра масс газа и скорости его расширения. Но, ракета не тратит собственное топливо.
   Это, по существу, промежуточный вариант между чисто "упругим" газо-кинетическим двигателем, (для которого всё топливо находится вне ракеты, но скорость снаряда должна быть больше скорости ракеты), и основным вариантом термо-кинетического двигателя, (при котором ракета несёт половину всего топлива, но зато скорость не ограничена). Для новой модификации, есть возможность разогнать ракету немного быстрее снаряда (в 2-3 раза), всё ещё без затрат топлива самой ракеты, но удельный импульс с ростом скорости будет постепенно уменьшаться (хотя КПД может быть постоянным и достаточно высоким, на уровне 50% и более).
  
   Вообще-то, мы уже рассматривали очень схожий по свойствам двигатель давным-давно, ещё в I части данного трактата, когда изучали возможность безракетного запуска грузов на околоземную орбиту. Там тоже было тело (топливный шнур), движущееся независимо от ракеты, и превращающееся в газ, только источником энергии для этого были химические реакции. Но принцип действия газа после его образования тот же. В рассматриваемом теперь случае будет больше относительная скорость и удельная энергия газа, но формулы преобразования энергии будут похожи.
  
   Таким образом, мы теперь имеем 3 базовых типа двигателя на внешних ресурсах:
   1) Пушечный ("упругий") газо-кинетический двигатель: всё топливо вне ракеты, подаётся из пушки ей вслед, предельная скорость ракеты на 3% меньше начальной скорости снаряда. Удельный импульс лучший из всех вариантов (ракета вообще не тратит топливо), КПД на уровне десятков процентов. При лазерном разгоне снарядов, можно достичь скорости 0,5 с...
   Пока есть возможность, надо использовать этот тип. Но он имеет ограничения: нужна пушка, и его сложно применять в атмосфере.
  
   2) "Неупругий" термо-кинетический двигатель с внутренним запасом топлива: половину топлива несёт ракета, снаряды летят ей навстречу, и чем быстрее летит ракета, тем лучше он работает. Удельный импульс 30% от суммы (ну то есть разности) скоростей ракеты и снаряда. Есть минус - ракета тратит топливо. И есть плюс - внешнее топливо может быть вообще неподвижно, удельный импульс зависит только от разности скоростей.
   В принципе, позволяет обойтись вообще без пушки, если есть возможность придать ракете начальную скорость как-то иначе. Но максимальная скорость ограничена тем, что ракета всё-таки теряет массу.
  
   3) И "внешне-внешний" термо-кинетический двигатель, химическая модификация которого (с внешним топливным шнуром) была рассмотрена ещё в конце I части, а кинетическая сейчас.
   Всё топливо находится вне ракеты, как в первом варианте.
   Топливо нагревается за счёт кинетической энергии при столкновении, как во втором (возможны варианты, когда нагревается за счёт химической или ядерной энергии, лазерного излучения, электрического тока).
   Максимальная скорость ракеты в принципе не ограничена, но реально будет ограничена падением эффективности преобразования энергии при росте отношения скорости ракеты к скорости расширения газа.
   Если максимальная теоретически возможная радиальная скорость (V1) свободного расширения газа в пустоту (при отсутствии сопла двигателя) фиксирована, (и равна половине разности скоростей сталкивающихся тел), то максимальная разность скоростей ракеты и центра масс газа (V2-V0) будет определяться физическими и геометрическими свойствами сопла двигателя и эффективностью преобразования внутренней энергии газа в работу.
   Для нейтрального газа при небольшой температуре, и металлического сопла (или пакета кольцевых металлических лопаток, как мы когда-то рассматривали для химической модификации в I части), предел отношения (V2-V0)/(V1) будет, по-видимому, примерно равен 2,5...3, и главным образом будет определяться не столько геометрией самого сопла или лопаток, сколько температурой газа, хотя при импульсном действии допустимая температура может составлять десятки тысяч градусов.
   Для плазменного магнитного сопла, при очень большом коэффициенте расширения газа и низких потерях, это отношение, вообще, может быть довольно большим, возможно на уровне 5-10, что в принципе позволяет даже при не очень горячей плазме достичь большой скорости. По существу, это будет распределённая в пространстве цепочка взрывных разгонных устройств с плазменной накачкой энергии от внешнего источника, взаимодействующих с магнитным полем разгоняемого аппарата.
  
  
  
  
   1.8 Сифонный (U-образный) газовый упруго-кинетический двигатель
   Для упруго-кинетического двигателя (т.е. когда снаряды догоняют ракету и передают ей импульс, превращаясь в газ) мы в III части рассмотрели простейший вариант сопла - просто входной патрубок, он же выходной, с определённым профилем сечения. Позже мы предложили "парашютный" вариант сопла - очень большой купол из тонкой плёнки, улавливающий и отражающий струю разреженного газа, при этом диаметр струи газа, и точность попадания в сопло, может быть порядка сотен метров.
   Но вариантов взаимодействия сопла с газом ещё очень много.
  
   Например, если потребуется, можно сделать режим работы двигателя постоянным, без пульсаций давления газа, и с довольно умеренной температурой, на порядок меньшей, чем при полном торможении газа.
   В исходном варианте вся кинетическая энергия газа вначале переходит в тепловую, и затем за счёт этой внутренней энергии газ расширяется назад. Это, в принципе, эффективно с точки зрения энергии, но есть недостатки.
   Во-первых, при сильном нагреве газа в некоторых диапазонах температур значительная доля энергии затрачивается на атомизацию и ионизацию, что снижает работоспособность газа и КПД.
   Кроме того, при ударном торможении газа о преграду резко повышается не только температура газа, но и давление, что тоже нехорошо.
   Одним из вариантов решения этих проблем является неполное торможение газа, то есть прохождение его с довольно большой скоростью по некоему криволинейному проходному тракту переменного сечения, при одновременном изменении вектора скорости, давления и температуры.
   В частности, это может быть U-образно изогнутая труба, постоянного или переменного сечения (с расширением на концах и сужением в зоне изгиба), оба открытых конца которой направлены назад. Струя газа входит в трубку через один раструб, сжимается в несколько раз, но не до полного торможения, так что только 5-10% кинетической энергии переходит в тепло.
   Скорость газа почти не уменьшается по величине, но вектор скорости разворачивается на 180о, и струя газа выходит назад через второй расширяющийся конец трубы, сохраняя более 95% начальной скорости.
   Если сравнить этот вариант с первоначальным, то есть полным переходом энергии газа в тепловую, и (частично) обратно в механическую, то КПД отличается очень сильно. В данном случае будет осуществляться почти идеально упругая передача максимального возможного импульса, в то время как при полном сжатии газа до остановки, его скорость затем восстанавливалась только на 50-70%, и передавался импульс около 75-85% (от максимально возможного при упругом отражении).
   Для такого двигателя тоже возможна модификация с трубой большого диаметра из тонкой плёнки и приёмным раструбом диаметром 100 метров.
   При скорости водорода относительно трубы в десятки км/с его температура может быть всего несколько тысяч градусов, а при скоростях в сотни км/с и температуре более 20.000 К можно использовать аналогичную конфигурацию магнитного поля.
   В общем, очень хороший вариант.
  
   Возможны и более сложные модификации, с разветвлением трубы более чем на два конца, которые могут быть направлены под разными углами друг к другу и к направлению полёта ракеты, через которые входят газовые потоки с разными скоростями от разных внешних источников. Например, так можно раздельно подавать извне как рабочее тело, с относительно небольшой скоростью, так и более высокоэнергетический носитель кинетической энергии, либо газы и плазму разного химического состава. При этом обмен импульсом и энергией между массами и потоками газов может осуществляться по разному, как при прямом механическом и атомарном взаимодействии, так и через посредство магнитных полей и токов. Для плазменного магнитного сопла можно предложить сложные конфигурации полей, осуществляющие функции энергетической и силовой машины, перерабатывающей потоки вещества и энергии.
  
  
  
  
   1.9 Атмосферный термо-кинетический двигатель (тепловая прямоточка)
   При некоторых специальных условиях возможны и другие варианты поставки топлива и его нагрева; например, часть топлива может находиться на борту ракеты или прилетать в виде снарядов с большой скоростью, а другая представлять собой водород из атмосферы планеты вроде Юпитера. Это будет аналог теплового воздушно-реактивного двигателя с нагревом газа за счёт кинетической энергии бортового запаса топлива.
   Такой аппарат будет довольно сложным технически, так как придётся лететь в верхних слоях атмосферы при довольно большой скорости и внешней температуре порядка 20-30 тысяч градусов. С другой стороны, он проще, чем вариант с потоком вещества в виде снарядов, так как не надо вообще ничего никуда запускать, топливо находится на борту. Я считаю, что в данных условиях техническая сложность реализации обоих вариантов будет примерно равной, и надо сравнивать их эффективность.
   При начальной параболической скорости полёта в верхних слоях атмосферы Юпитера 60 км/с, и с учётом собственной немаленькой скорости вращения планеты, встречная скорость потока водорода уже вначале будет около 70 км/с. Далее она будет возрастать, и удельный импульс соответственно будет возрастать тоже, оставаясь на уровне 30% разности скоростей аппарата и атмосферы планеты, так что удельный импульс (по затратам бортового запаса топлива) будет больше 20 км/с.
   Чтобы увеличить свою скорость на 30 км/с, т.е. в 1,4 раза, ракете придётся уменьшить свою массу в 1,4^^3,3 = 3,2 раза (по "прогрессивной" формуле Циолковского, с УИ пропорциональным скорости).
   Т.е. при начальной массе 16 тонн, и начальной параболической скорости (относительно центра планеты) 60 км/с, такой аппарат разгонится в атмосфере Юпитера от 60 до 90 км/с (относительно центра планеты), затратив 11 тонн топлива, и уменьшив свою массу с 16 до 5 тонн.
   Выйдя после этого из гравитационного поля планеты на бесконечность, ракета будет иметь скорость 67 км/с.
  
   Сравним этот результат с базовым вариантом термо-кинетического двигателя в вакууме, при котором 5,5 тонн топлива находятся на борту ракеты (имеющей собственную массу 5 тонн), а 5,5 тонн летят ей навстречу, имея вблизи границы атмосферы скорость 60 км/с.
   В этом случае встречная скорость будет 120 км/с, и удельный импульс (в пересчёте на затрачиваемую массу бортового топлива) вдвое больше, чем в атмосферном варианте, т.е. около 40 км/с. Казалось бы, и конечная скорость ракеты должна быть больше...
   Однако, общая масса снарядов (в данном случае, и всего топлива) по-прежнему 11 тонн, и их общая кинетическая энергия (в системе отсчёта планеты) такая же. Так что сильно больший результат мы не получим.
   Теперь масса ракеты уменьшится с 10,5 до 5 тонн, т.е. в 2,1 раза. Извлечём корень 3,3 степени из 2,1 и получим, что скорость ракеты (в системе отсчёта встречного снаряда) увеличится в 1,25 раза, т.е. со 120 км/с до 150.
   А скорость в системе отсчёта планеты увеличится с 60 км/с до 90. Вот. Как ни крути, а больше энергии, чем её есть, не извлечь...
  
   То есть, результаты в обоих случаях в точности одинаковые, до процента, хотя, казалось бы, параметры сильно различаются.
   Мы можем взять 16 тонн льда (на условно-бесконечном расстоянии от Юпитера), и получить на выходе 5 тонн, летящих в ту же бесконечность со скоростью почти 70 км/с. Причём, как выяснилось, детали взаимодействия вещества мало влияют на конечный результат, а в большей степени влияет начальный запас энергии, и коэффициент её преобразования в кинетическую энергию оставшейся части вещества.
   То есть при равной начальной массе и кинетической энергии вещества, и равной эффективности механизмов преобразования энергии, мы получим примерно равный результат, хотя физические механизмы взаимодействия могут сильно отличаться.
  
   Физический смысл всего этого манёвра заключается в том, что мы сбрасываем некоторую массу вещества в достаточно глубокую потенциальную яму, а часть высвобождающейся гравитационной энергии передаём другой массе вещества, в данном случае в виде кинетической энергии. В общем, обычная гидроэлектростанция, аналог водяной мельницы.
   В данном случае мы сбросили 11 тонн льда из бесконечности в атмосферу Юпитера, с теоретическим гравитационным потенциалом 1,8 ГДж/кг; общие затраты энергии 20.000 ГДж; полезная кинетическая энергия вещества, опять улетевшего на бесконечность, 2,3 ГДж/кг, и всего энергии 11,5 ТДж. Стало быть, КПД нашей гравитационной мельницы 57%, что близко к КПД гравитационных гидроэлектростанций на Земле.
  
   Правда, мы здесь оптимистично забыли, что сможем извлечь и использовать только часть этой кинетической энергии.
   Если бы целью данного манёвра было просто улететь из системы Юпитера, то мы могли бы использовать всю энергию ракеты. Но наша цель другая - мы хотим получить замкнутый энергетический цикл, перерабатывающий вещество спутников Юпитера, и позволяющий выводить часть вещества и энергии за пределы системы для других потребителей.
   Поэтому КПД рабочего цикла окажется меньше примерно на треть.
   Если "сухой" вес ракеты 1 тонна, и она берёт на борт 9,5 тонн льда, то на выходе его останется 4 тонны. Эти 4 тонны будут улетать от Юпитера со скоростью 70 км/с, и их можно частично использовать для возобновления цикла, а частично отправить на другие нужды.
   Саму ракету надо затормозить, развернуть и снова заправить, и на всё это уйдёт от 10 до 50 % полученной энергии, в зависимости от того, где брать воду (точнее мы определим немного позже). Так что за пределы системы мы сможем отправить всего 2-3 тонны льда, и 40-70% полученной энергии.
  
  
   Мы можем оценить мощность такой системы. При длительности цикла 12 суток, или миллион секунд, сухой массе ракеты 1000кг, и энергии на выходе 5.000 ГДж, средняя мощность электростанции составит 5 МВт, а удельная мощность 5 кВт/кг сухого веса ракеты, что и не мало, и не много.
  
  
  
  
   1.10 Экономичный (низкоимпульсный) термо-кинетический двигатель
  
   Раньше мы рассматривали (и ещё будем рассматривать в следующих частях) возможные типы двигателей на внешних ресурсах с точки зрения получения максимальной скорости и удельного импульса, для максимально эффективного разгона космических аппаратов.
   Но есть задачи, для которых требуется только лишь вполне определённая скорость и величина изменения импульса, например, для массовой доставки потока грузов внутри околопланетной системы по экономичной траектории, и в этом случае для эффективного использования энергии и вещества оптимальным будет не слишком большой удельный импульс двигателя, примерно в 1,5-2 раза больший, чем требуемое приращение скорости груза.
   В этом случае можно использовать двигатели с внешним нагревом газа за счёт разных источников энергии: электрическим, лазерным, за счёт химических реакций, или кинетической энергии. При этом также существуют два основных варианта способа размещения топлива (рабочего тела): внутри ракеты, или вне её, в частности неподвижно относительно поверхности планеты (в виде неподвижного топливного шнура или цепочки зарядов, как мы рассматривали когда-то давно для химического варианта).
  
   Мы здесь рассмотрим для сравнения два типа систем с внешним кинетическим нагревом рабочего тела:
   - ракетный двигатель (с внутренним запасом рабочего тела, и его внешним кинетическим нагревом), и
   - безракетную стационарную систему с внешним хранением рабочего тела и его внешним кинетическим нагревом, (почти идентичную той, что была предложена для вывода грузов на околоземную орбиту, за исключением способа нагрева рабочего тела, что позволит получить больший удельный импульс, чем при химическом нагреве).
   Для стационарной системы запуска ракет с крупных спутников Юпитера второй вариант лучше, но надо сравнить его с другими.
   Какой именно тип двигателя, по способу нагрева и размещению рабочего тела, окажется наилучшим, будет определяться конкретными условиями, в частности, доступностью того или иного вида местного топлива. Я считаю более эффективными для начального разгона ракет системы с внешним стационарным размещением топлива (в виде шнура или капсул), но при небольших скоростях возможны и автономные варианты (ракетные).
   Возможны более сложные модификации стартовой системы, с непрямым нагревом рабочего тела за счёт кинетической энергии, когда энергия вначале вырабатывается в стационарном генераторе, и затем подаётся к разгонным устройствам в электрическом виде. Такой вариант проще и удобнее с точки зрения управления и использования, при этом система с раздельным приёмом и использованием энергии может иметь высокий КПД, но требует больше начальных затрат при создании.
   Для старта с небольших планет, размером примерно с Луну, возможны также пушечные (газовые) варианты, но они жизнеспособны при требуемой скорости не более 5-6 км/с. Электромагнитные катапульты не имеют такого ограничения, и могут быть эффективными для запуска небольших снарядов, но требуют значительных начальных затрат на создание системы.
   Ракеты с обычным химическим топливом (кислородно-водородным или метановым) тоже могут быть жизнеспособны при скоростях до 5-6 км/с, при наличии источников получения такого топлива, но мне кажется, что расходы на получение и использование двухкомпонентного жидкого топлива будут выше, чем для термо-кинетического двигателя с внешним размещением рабочего тела и его внешним нагревом.
  
   В системах Юпитера и Сатурна наиболее доступным веществом будет вода в виде льда, причём её запасы там очень велики, и в первую очередь надо рассматривать варианты использования воды в исходном виде.
   Использование водорода даёт некоторые преимущества, но если его придётся получать из воды, то эффективность добычи топлива снизится на порядок, так как 90% массы (в виде кислорода) пойдёт в отходы. Водородная топливная система оправдана в том случае, когда либо есть потребность в получаемом попутно кислороде (для нужд обитаемой станции), либо есть запасы водорода или хотя бы метана, чего следует ожидать в более холодных системах, либо непосредственно в атмосфере планет-гигантов, но извлекать топливо оттуда невыгодно.
  
   Рассмотрим сначала варианты с водой.
   Принцип нагрева топлива будет один и тот же, независимо от того, хранится это топливо (рабочее тело) в баках ракеты, или полностью вне её. Во втором случае более эффективно используется полученная газом энергия, но принцип нагрева газа во всех случаях будет один.
   Допустим, у нас есть некоторая масса вещества (например льда, хотя в принципе можно использовать что угодно, даже силикатный песок), которую мы как-то смогли разогнать до скорости 70 км/с, относительно другой массы вещества (которую мы считаем неподвижной). Кинетическая энергия 1 кг носителей составляет 2450 МДж/кг.
   При столкновении этого вещества с существенно большей массой (неподвижного) рабочего тела, в соотношении 1:150, выделится избыток энергии около 16 МДж на килограмм общей массы. Будет передан также некоторый начальный импульс, около 500 м/с, что не очень много, но про него надо помнить.
   Если у нас есть обычный лёд или вода в жидком виде, то после получения 16 МДж/кг дополнительной энергии, это всё превратится в аналог обычного кислородно-водородного топлива (высшая энергия сгорания которого 15,5 МДж/кг). Удельный импульс такого топлива будет на уровне 4500 м/с, и он, в принципе, может быть направлен в произвольную сторону (относительно вектора скорости носителей кинетической энергии); но величина импульса будет зависеть от направления. Если направление вектора тяги и вектора скорости носителей совпадают, то УИ будет на 500 м/с больше, а если в противоположную сторону - на 500 м/с меньше; то есть, в зависимости от направления старта ракеты, удельный импульс в данном случае будет переменным, от 4000 до 5000 м/с.
   Мы можем произвольно регулировать соотношение масс носителей кинетической энергии и рабочего тела, и таким образом увеличивать удельную энергию рабочего тела и удельный импульс, но есть несколько нюансов, которые ограничивают возможность увеличения УИ.
   При температуре выше 3500К (для давлений порядка 10 МПа) вода разлагается сначала на молекулы газов и радикалы, а затем на атомы водорода и кислорода, и в интервале 3500-6000К поглощается очень много энергии, не пропорционально росту температуры. Запас внутренней энергии возрастает, и, в принципе, потом может быть возвращён и использован при понижении температуры. Но поскольку способность газа совершать работу при расширении определяется величиной PV, (которая определяется произведением числа молей газа на температуру), то замедление роста температуры, несмотря на рост запаса энергии, означает, что для совершения такого количества работы, которое соответствует хотя бы половине запаса внутренней энергии, может потребоваться очень значительное расширение газа, в сотни и тысячи раз, что не всегда технически возможно.
   Из-за этого в верхней части температурного интервала диссоциации, то есть при температурах 5000-6000К, термодинамические свойства газа будут плохими, в результате чего КПД двигателя упадёт ниже 50%.
   Далее в интервале 9000-10.000К атомарную смесь водорода и кислорода можно использовать, хотя и с не очень хорошим КПД. Выше 10-11 тысяч градусов начинается массовая ионизация кислорода и водорода, и энергия опять поглощается практически безполезно. При температурах выше 20.000К воду, по-видимому, тоже можно использовать в виде плазмы.
  
  
   Рассмотрим теперь второй пригодный для использования воды диапазон температур, 9000-10.000К.
   В этом диапазоне диссоциация молекул уже закончена, но ионизация атомов ещё не началась, и рабочее тело представляет собой нейтральный одноатомный газ, почти идеальный в небольшом диапазоне температур. Однако внутренняя энергия этого газа только на 1/4 будет представлена механической энергией поступательного движения атомов, а 3/4 энергии будет скрыто, то есть затрачено на диссоциацию молекул.
   При температуре 9000 К, и молярной массе 6, энергия поступательного движения атомов будет составлять 18,7 МДж/кг (т.е. это теплоёмкость идеального одноатомного газа, с i=3 и молярной массой 6).
   Энергия полной диссоциации воды (взятой в виде льда) на атомы 54,3 МДж/кг, то есть в данном случае в 3 раза больше, чем теплоёмкость того же количества получившегося одноатомного газа. Стало быть, с учётом скрытых степеней свободы, эффективное среднее значение i во всём рабочем интервале температур газа будет равно не 3, а около 12.
   Это означает, что для высвобождения 50% тепловой энергии в виде работы (или кинетической энергии струи газа), газу надо расшириться в 2^^6 раз, то есть примерно в 60 раз (по объёму), а для высвобождения 75% внутренней энергии в 3000 раз. В принципе, это не самые плохие показатели работоспособности, например у твёрдого ракетного топлива бывает и хуже.
   На самом деле, такой грубый подсчёт, с усредненным показателем числа степеней свободы по всему диапазону температуры от 0 до 9000 К, даст не совсем верный результат, поскольку энергия расходуется на скрытые степени свободы не равномерно при нагреве газа, а в основном в нескольких относительно узких интервалах. Вначале вода испаряется при 400-500 К, но эта энергия полностью необратимо потеряна, так как температура в ракетном двигателе ниже 2000К точно не понизится. Также необратимо теряется энергия возбуждения молекул воды до 2000К, поскольку извлечь её в ракетном двигателе невозможно.
   Полная внутренняя энергия, затраченная на нагрев воды до 9000К с учётом диссоциации, равна 73 МДж/кг (считая нагрев изохорным, то есть мгновенным, или импульсным, без изменения объёма).
  
   В случае нагрева при постоянном давлении, то есть постепенном подогреве новых подаваемых порций рабочего тела, к энтальпии, при той же температуре, надо прибавить ещё объёмную энергию - то есть, на самом деле, работу, затрачиваемую данной порцией газа во время его нагрева, по вытеснению, и ускорению, предыдущей порции. Эта работа и прибавляется, вообще-то, к кинетической энергии предыдущей порции газа; но, если процесс стационарный, то можно считать, что эта прибавка к энтальпии (в виде заимствованной внешней работы) осуществляется данным объемом газа по отношению к самому себе. В результате, как полная затрачиваемая на нагрев энергия (энтальпия), так и совершаемая далее газом работа, увеличиваются на одну и ту же величину, равную PV, в данном случае 12,5 МДж/кг. Поскольку эта добавочная энергия полностью переходит в полезную работу, то это выгодно; т.е. стационарный (изобарный) нагрев струи газа термодинамически выгоднее, чем мгновенный импульсный (взрывной), поскольку температура при этом несколько ниже, а КПД выше.
   Таким образом, полная энтальпия, при стационарном нагреве струи газа и постоянном начальном давлении, равна 18,7+12,5+54,3 = 85,5 МДж/кг. Из этой энергии 12,5 МДж/кг - работа внешних сил, вытесняющих очередную порцию газа в сопло; и начальная внутренняя энергия газа 73 МДж/кг. (Я надеюсь, понятно, что за ноль энтальпии принято исходное вещество, лёд).
   При скорости носителей кинетической энергии 70 км/с, и удельной энергии 2,45 ГДж/кг, понадобится отношение масс примерно 1:28. При этом будет также передан начальный импульс носителей кинетической энергии, равный 2500 м/с (по отношению к всей массе рабочего тела), что уже весьма немало по отношению к общему импульсу.
   После нагрева до 9000К, при коэффициенте (объёмного) расширения газа в 60 раз, будет совершена работа PV+0,5*U = 12,5 + 36,5 = 49 МДж/кг, что соответствует скорости истечения 10.000 м/с.
  
   Это довольно неплохо, но надо не забывать про несколько вещей.
   Во-первых, начальный импульс носителей кинетической энергии будет добавляться или вычитаться из общего импульса двигателя, в зависимости от направления полёта ракеты. Таким образом, полный удельный импульс может изменяться от 7500 до 12500 м/с, и будет наибольшим, если ракета стартует в направлении от Юпитера, то есть вдоль вектора скорости внешних носителей кинетической энергии. При направлении старта вдоль вектора орбитальной скорости одного из спутников Юпитера, прибавки к импульсу не будет, и он составит 10.000 м/с.
   Во-вторых, требуется сопло с достаточно большим коэффициентом расширения, поскольку термодинамические свойства газа не очень хорошие (i=12). В случае использования внешнего топливного шнура с радиальным расширением газа, типичный коэффициент объёмного расширения будет около 20, и скорость радиального расширения газа будет несколько меньше, 9 км/с (но скорость аппарата при этом, как мы знаем, может достичь 20 км/с и более). В этом случае добавочный импульс, приносимый носителями кинетической энергии, можно практически не учитывать (а при косвенном электрическом нагреве шнура добавочного импульса вообще не будет).
   В-третьих, температура газа довольно высокая для металлического сопла, но при прерывистом режиме работы эффективную температуру поверхности сопла можно снизить в несколько раз.
  
   Дальнейшее увеличение внутренней энергии рабочего тела в данном случае, по-видимому, не эффективно, так как начнётся ионизация атомов, и в интервале 10.000-20.000К на это уйдёт порядка 250 МДж/кг энергии. При температуре около 30.000 К, когда будет закончена первая ионизация кислорода и водорода, рабочее тело тоже будет обладать приемлемыми термодинамическими параметрами, но не очень хорошими, так как будет продолжаться ионизация кислорода, на которую будет уходить в среднем более 50% поступающей энергии, и эффективное число степеней свободы частиц газа, в расчёте на полную энергию, будет колебаться в пределах 6-12.
  
   ...
   Водород в качестве рабочего тела можно использовать в тех же температурных диапазонах, что и воду (3000-4000К; 9000-10000К; и свыше 30000). При равной температуре он будет давать удельный импульс в 2-2,5 раза больше, чем вода, благодаря в 6 раз большей теплоёмкости; при равной удельной энергии на килограмм, будет давать всё же на 5-10% больший удельный импульс, и при существенно более низкой температуре, в 2,5 раз. Так что, при наличии водорода, и возможности его хранения, он конечно предпочтительнее; особенно если требуется получить максимальный возможный удельный импульс.
   Но если требуется получить относительно небольшой прирост скорости ракеты, до 5 км/с, и в качестве доступного местного ресурса имеется вода, то лучше непосредственно использовать воду. Для получения такого же конечного импульса ракеты, потребуется в 4 раза меньше воды, чем в случае предварительного извлечения из неё водорода; энергии непосредственно на нагрев рабочего тела уйдёт в 2 раза меньше, а с учётом затрат на электролиз - в 6 раз меньше.
   При требуемом изменении скорости ракеты 10 км/с, вода и водород становятся примерно равноценными по затратам вещества и энергии, однако в случае использования воды температура в сопле двигателя будет существенно выше; если же требуется придать ракете скорость 12-15 км/с, то водород, конечно, лучше.
   Однако для очень больших скоростей и удельных импульсов, более 20 км/с, при использовании плазменного двигателя с магнитным рабочим трактом, разница между различными видами вещества становится менее существенной, и в определённом интервале температур вода и другие вещества могут оказаться предпочтительнее водорода.
  
   В целом, для транспортно-энергетической системы вблизи Юпитера лучше использовать воду (в виде льда с внешним нагревом для основного потока грузов, и жидких продуктов электролиза для локальных манёвров); для запусков с Земли выбор вариантов намного больше.
  
  
  
  
  
  
   2. Гравитационная энергетика в системе Юпитера
  
   Прежде чем лететь к Солнцу, посмотрим, что нам может дать его скромный младший брат. Он меньше, но его проще использовать.
   Во-первых, до Юпитера намного проще долететь: для прямого полёта к Солнцу надо вылететь с Земли со скоростью 33 км/с, а для достижения Юпитера нужна скорость 16 км/с, хотя время полёта в несколько раз больше. На обычных химических ракетах до Солнца вообще не добраться никак.
   Во-вторых, возле Юпитера прохладно, и можно почти не заботиться о теплозащите для ледяных и даже водородных снарядов.
   В-третьих, вокруг Юпитера много спутников и просто кусков льда, их общая масса всего в 20 раз меньше массы Земли, так что воду с собой везти не надо. Система Юпитера может быть почти неисчерпаемым источником энергии и вещества для других областей Солнечной системы.
   Правда, II космическая скорость для границы атмосферы Юпитера не очень большая, около 60 км/с, что для наших целей маловато, но для начала хватит.
  
  
   2.1 Базовый энергетический цикл
   Возьмём два куска льда, в точке, удалённой от Юпитера на 10-20 миллионов километров. Лёд можно отколупнуть от любого из полусотни мелких спутников, диаметром 1-5 км, которые вращаются в этой зоне с орбитальными скоростями 3-5 км/с. (Причём внешние спутники, с расстояниями более 20 млн.км, вращаются навстречу внутренним, что тоже можно использовать).
   Запустим эти два куска с небольшой начальной скоростью, 4-5 км/с, в сторону Юпитера, так, чтобы они двигались по двум встречным ветвям параболической или очень длинной эллиптической траектории. Примерно через месяц они достигнут нижней точки траектории, разогнавшись при этом почти до 60 км/с, столкнутся почти над самой атмосферой Юпитера, с относительной встречной скоростью 120 км/с, и испарятся, превратившись в плазму при температуре 40-50 тысяч градусов.
   Само по себе это не очень полезно для нас, хотя, пожалуй, можно использовать для освещения.
  
   Возьмём теперь ракету. Её придётся привезти с Земли (если, конечно, мы так и не научимся делать высокопроизводительные 3D-принтеры с вращательной подачей материала из рулонов).
   Но ракету придётся привезти 1 раз, а заправлять её мы будем на месте.
   Ракету запустим по такой же траектории, а навстречу ей - много мелких кусочков льда. Внутри ракеты тоже будут такие же кусочки, (или жидкая вода, подаваемая в сопло струйками).
   В нижней точке траектории, произойдёт взаимодействие порций вещества, имеющих большую разность скоростей, и при этом часть выделившегося избытка кинетической энергии может быть преобразована в полезную работу, то есть в данном случае в кинетическую энергию оставшейся массы вещества (ракеты). Ранее, в пунктах 1.9-1.10, мы рассмотрели 2 различных способа организации такого взаимодействия, но их намного больше, можно предложить ещё 3-4 альтернативных варианта. Но мы видели, что, практически независимо от выбранного варианта преобразования энергии, конечный результат, фактически, зависит только от её (энергии) начального запаса; то есть примерно 55-60% избытка кинетической энергии расходуемого топлива может быть передано ракете. Если масса ракеты примерно вдвое меньше массы всего затраченного топлива (в обоих рассмотренных случаях, затрачивалось 11 тонн топлива при оставшейся массе 5 тонн), то её скорость относительно планеты может быть увеличена с 60 до 90 км/с, и тогда снова на бесконечность она выйдет со скоростью почти 70 км/с, и удельной кинетической энергией 2,3 ГДж/кг.
  
   Далее, надо сделать ещё несколько манёвров.
   Оставшаяся в ракете часть топлива должна отделиться от неё, первоначально в виде небольших контейнеров или кассет с собственными устройствами управления и навигации, и продолжить движение к цели с максимальной скоростью (и энергией); однако, саму ракету (уже без топлива) надо сразу же снова затормозить на 30 км/с, так, чтобы она снова достигла исходного пункта заправки, на расстоянии 20 млн.км от Юпитера, с почти нулевой скоростью. (проще всего, вообще-то, использовать для этого атмосферу самой планеты, и какую-то разновидность парашюта, возможно электромагнитного).
  
   Таким образом, далее у нас будет 4 тонны топлива (льда) в кассетах, летящих со скоростью около 70 км/с, и ракета массой 1 тонна, без топлива, летящая по длинной эллиптической траектории, с минимальной скоростью.
   Проще всего, конечно, было бы, если бы и ракета, и кассеты с носителями кинетической энергии могли достичь исходного заправочного пункта за одинаковое время. Однако, это сложно сделать: ракета будет двигаться по экономичной траектории месяц, а кассеты со скоростью 70 км/с достигнут цели за 3 дня. Поскольку время, за которое топливо достигает цели, меньше, то для его использования потребуется вторая такая же ракета, уже заправленная и находящаяся в исходной точке в 20 млн км от Юпитера. За то время (30 суток), пока первая ракета вернётся в исходную точку и будет снова заправлена, вторая как раз достигнет Юпитера и отправится назад, предоставив топливо для повторного запуска первой. При этом длительность цикла получения топлива для следующего запуска будет 30 суток, а длительность цикла использования ракет вдвое больше.
   В принципе, двух ракет уже достаточно для организации такого непрерывно действующего цикла; но при этом могут потребоваться дополнительные манёвры для изменения точки старта, поскольку сама ракета летит назад от Юпитера по длинной эллиптической траектории, и может вернуться примерно в ту же точку, откуда стартовала в первый раз; в то время как кассеты с топливом движутся с большой скоростью по гиперболической траектории, и прилетят в другую точку, отстоящую от первой примерно на 1/8 окружности радиусом в 20 миллионов километров, т.е. пересекут эту окружность на расстоянии в 15 млн км от первой точки. Поэтому, для организации непрерывного энергетического цикла, может потребоваться 2 или более заправочных станций, распределённых по дальней орбите на расстоянии 10-20 млн км от Юпитера, и по крайней мере 1 ракета на каждую станцию. Хотя, в минимальном варианте, по-видимому, будет всё таки достаточно не более двух заправочных станций (двух спутников или комет), находящихся на орбите с равным периодом обращения, в 15 млн км друг от друга, и всего двух ракет, по одной на каждую станцию (или по 2, в более сложном варианте). При этом первая ракета поставляет носителей кинетической энергии для второй станции, отстоящей на 45о по орбите от исходной; вторая ракета, на второй заправочной станции, использует часть этой энергии для разгона, и достигает Юпитера за то время, пока первая летит обратно; и затем поставляет энергию для первой, которая к тому времени опять находится на первой станции.
  
   Для следующего запуска вновь заправленной ракеты к Юпитеру потребуется потратить часть носителей кинетической энергии (и некоторое дополнительное количество льда в точке старта, которое мы не учитываем, так как его там много). Если исходная масса ракеты и отправляемого с ней топлива 16 тонн, и её надо ускорить (относительно точки старта) на 5 км/с, то для этого необходима энергия не менее 12,5 МДж/кг, или 200 ГДж на всю массу в 16 тонн; с учётом КПД преобразования энергии 50%, придётся затратить 400 ГДж энергии носителей кинетической энергии, то есть 200 килограммов полученного ранее вещества, летящего со скоростью 67 км/с.
  
   Можно также провести оценку потребного количества энергии и вещества иначе: ранее мы рассчитали, что для испарения льда, нагрева газа до 9000К и получения реактивной струи со скоростью 10 км/с, необходимо 85 МДж энергии на килограмм льда, то есть соотношение масс льда и носителей кинетической энергии 1:28. При удельном импульсе топлива 10 км/с, для разгона на 5 км/с, по формуле Циолковского (т.е. при расходе топлива из бака самой ракеты), требуется увеличить исходную массу ракеты на 65%, то есть в данном случае на 10,3 тонны; и для нагрева этой массы потребуется 370 кг носителей кинетической энергии при скорости 67 км/с.
   Полученная во втором случае оценка, правда, вдвое больше, чем в первом, так как была выбрана не самая экономичная для данного случая скорость истечения газов. Если же выбрать наиболее экономичный вариант, с соотношением масс льда и носителей кинетической энергии 1:150, энтальпией газа 16 МДж/кг, и скоростью истечения 4,5 км/с, то для запуска потребуется, правда, втрое большая дополнительная масса льда (32 тонны вместо 10,3); но зато энергии почти вдвое меньше, всего 220 кг носителей кинетической энергии, что почти точно соответствует первой оценке.
  
   Таким образом, для запуска к Юпитеру 16 тонн полезной массы, можно потратить либо чуть больше льда (32 тонны) и меньше энергии (220 кг носителей кинетической энергии); либо меньше льда (10 тонн) и больше энергии (370 кг носителей). Возможно, что лучше всё-таки вариант с меньшим расходом льда, так как энергии в любом случае достаточно.
   Таким образом, для запуска нового цикла придётся затратить около 10% энергии, полученной в предыдущем цикле. А оставшиеся 90% можно использовать как угодно. То есть, из 4 тонн полученных носителей кинетической энергии, только 400 кг тратиться на все энергетические нужды по организации нового цикла, а оставшиеся 3,6 тонны могут быть использованы для получения энергии, добычи ресурсов, поддержки местной транспортной системы, либо отправлены далее в другие части Солнечной системы, в том числе к Земле, для доставки новых грузов, в том числе, в систему Юпитера.
  
  
   Мощность всей описанной энергосистемы будет лимитирована в основном количеством и вместимостью используемых в ней ракет. Если с Земли в систему Юпитера отправить 100 тонн груза, 50% которого будут составлять ракеты (точнее, в основном, их баки для воды или контейнеры для льда), то, при описанной продуктивности (4 тонны вещества за 2 месяца на 1 ракету весом в тонну), месячное производство носителей кинетической энергии составит 100 тонн. Чистый выход (после вычета той части, которая используется внутри системы) 80 тонн в месяц, или 1000 тонн в год. При этом, непосредственно к Земле удастся направлять не всё произведённое вещество; траектории движения кассет с топливом будет возможно корректировать только в ограниченных пределах, порядка 10-20о, непосредственно во время их разгона вблизи Юпитера; кроме того, тогда же можно изменять и скорость их движения, которая не обязательно должна всегда быть равной 70 км/с, а может варьироваться в пределах от 40 до 80 км/с, (при этом, чем меньше скорость, тем большее количество вещества по массе можно получить, при примерно равном общем запасе энергии). В зависимости от скорости движения, кассеты с носителями кинетической энергии будут достигать Земной орбиты за 3-6 месяцев, что позволяет выбирать как точку достижения орбиты в произвольных пределах, так и момент времени прихода в эту точку. С учётом этого, к Земле удастся направлять около 50% произведённого вещества, остальное надо будет использовать внутри системы Юпитера или других частях Солнечной системы. (Для обеспечения максимальной возможной поставки носителей энергии к Земле, одну или две заправочных станции можно разместить непосредственно в секторе, направленном в сторону Солнца, и ещё 1 или 2 на значительном удалении от них; тогда поток отправляемой к Земле энергии может составить более 80% от всей добываемой, т.е. 1000 тонн носителей в год).
  
   Таким образом, отправив к Юпитеру один добывающий комплекс весом 100 тонн, можно будет ежегодно получать 1000 тонн н.к.е. (меня немножко утомило 10 раз на странице писать "носители кинетической энергии"... надо придумать короткое и понятное название).
  
   Земную орбиту кассеты с луцем будут пересекать со скоростью 80 км/с относительно Солнца, или 50-110 км/с относительно Земли, в зависимости от времени года. При скорости движения микро снарядов (навстречу орбитальному движению Земли) более 100 км/с, их кинетическая энергия составит 5 ГДж /кг, что позволит либо вывести на околоземную орбиту в 50 раз большую массу грузов (50 тысяч тонн в год, не смейтесь);
   либо отправить обратно к Юпитеру в 10 раз больший груз, по отношению к массе полученного луца (1000 тонн х 10 =10.000 тонн в год).
  
  
   То есть.
   Мы вначале, невероятно напряглись, и с помощью тростниковых плотов, обвязанных сушёными лианами химических ракет, отправили в систему Юпитера 100 тонн груза (на самом деле, надо ещё везти топливо чтобы там причалить, хотя Юпитер в этом сильно поможет, так что топлива надо всего тонн 200-300, а общий вес возрастёт в 3-4 раза; либо, можно вначале отправить минимальный урезанный вариант системы, в 5-10 тонн веса, всего с 2-3 рабочими ракетами, и соответственно с меньшей производительностью).
   Потом, оно туда летит 2,5 года; потом, ещё 2-3 месяца развёртывает добывающую систему, и ещё через 4 месяца присылает первую партию луца обратно в околоземное пространство. Итого, через 3 года после запуска первого корабля, мы начинаем получать, в заданной точке возле Земли, ежегодно, бесплатно, количество энергии, достаточное для отправки ещё 100 таких же кораблей (топливо на борту им больше не требуется, их там встретят). Ещё через 3 года, луцепоток возрастёт ещё в 100 раз. И можно будет отправлять, при желании, 10 тысяч кораблей такого же веса, как самый первый... причём, для их старта с Земли почти не надо будет топливо.
  
   Микро снаряды, летящие со скоростью более 100 км/с, вообще-то, плохо сочетаются с атмосферой, даже на высоте 100-150 километров, так что, чтобы "зацепить" взлетающий с Земли аппарат за луцевую топливно-энергетическую магистраль, его всё-таки надо поднять вертикально вверх хотя бы на 200 км. Но это можно сделать либо совсем без топлива, с помощью наземной или стратосферной катапульты с начальной скоростью до 2 км/с, либо с помощью относительно небольшого реактивного ускорителя. Дальше, кораблю понадобится только запас рабочего тела, при безграничном энергетическом ресурсе и удельном импульсе, в зависимости от потребности, от 10 до 100 км/с. При желании, корабль вообще можно разгонять только внешними ресурсами, без затрат бортового запаса рабочего тела, но это оправдано только при требуемой скорости более 50 км/с.
  
   Заметьте, здесь нигде не использовались электромагнитные пушки. Оказывается, луц, со скоростным фактором до 100 км/с, можно получить даром, и сколько угодно. Надо только немного подумать, и потом аккуратно управлять потоками вещества и энергии. Людей, не способных попасть в монетку хотя бы за одну-две тысячи миль, в дальний космос не пустят.
  
   За 10 лет мощность энергетического цикла можно нарастить в миллион раз, (в 100 раз каждые 3 года), начав с запуска единственного корабля на химическом топливе, и больше не расходуя дополнительную энергию.
  
   Мне кажется, на первое время нам хватит.
   Помимо освоения внешних планет Солнечной системы, это позволит направлять грузы за пределы Солнечной системы со скоростью до 100 км/с, а при желании, летать и к Солнцу, хотя непонятно пока, зачем.
  
   Мы можем оценить стоимость получаемой таким образом энергии.
   Каждый килограмм структурного вещества (ракет, добывающих установок), доставленный в систему Юпитера, ежегодно будет возвращать к Земле 10 кг вещества при скорости от 50 до 100 км/с, с кинетической энергией от 1 до 5 ГДж/кг, в среднем 3 ГДж/кг. Стоимость перевозки оборудования к любой планете, после раскрутки системы, станет почти равной нулю (равна стоимости сопла для использования внешнего топлива, плюс распределённой инфраструктуры управления и навигации).
   Таким образом, стоимость установленного в системе Юпитера оборудования, вместе с доставкой, будет мало отличаться от исходной стоимости производства этого оборудования на Земле.
   Оценим стоимость 1 килограмма оборудования в 1000 долларов. Тогда, в расчёте на окупаемость за 5 лет, оно доставит обратно к Земле 50 килограммов луца, с суммарной энергией 150 ГДж. Стало быть, цена этой энергии и есть 1000 долларов; 150 МДж тогда стоят 1 доллар; а 3 МДж, соответственно, 2 цента.
   2 цента за 0,8 кВт*час.
   2,5 цента за 1 кВт*час.
   В 4 раза дешевле, чем стоит выработка электроэнергии на Земле...
   Энергоэффективность и стоимость оборудования будут примерно сравнимыми с оборудованием электростанций, используемым на Земле (средняя вырабатываемая мощность порядка 1 кВт на килограмм массы оборудования, при его стоимости 1000 долларов за килограмм установочного веса).
  
   ...Через 10 лет после запуска проекта, при луцепотоке 1 миллиард тонн в год, полёт на Луну в викенд будет стоить 500 долларов (на двоих). Вот, оказывается, откуда они там, в будущем (в фантастических фильмах и книгах) будут брать столько энергии, чтобы школьники могли на каникулах слетать, ну хотя бы на Уран...
  
   (Была бы хоть сотня килограммов Луца со скоростным фактором 100 км/с во времена Гагарина... Человека в космос можно было бы запускать на слегка модернизированном Запорожце, а на Луну летать на маршрутке...)
  
   Запуск 1 килограмма груза на околоземную орбиту 0,5 доллара.
   Доставка 1 килограмма груза на Луну 1 доллар.
   Доставка следующих партий оборудования в систему Юпитера 10 долларов за кг, то есть 1% стоимости изготовления оборудования на Земле.
  
   То есть, по сути, система раскрутит себя сама, за 3-6 лет, если её снабжать новым оборудованием, стоимость изготовления которого на Земле является единственным лимитирующим фактором для наращивания мощности системы. Остальное - вещество и энергию - она произведёт сама, было бы из чего.
  
  
  
  
  
   2.2 Где брать воду
  
   Внешние мелкие спутники Юпитера вращаются на расстояниях 10-20 миллионов километров от него, со скоростями 3-4 км/с, и если на начальном этапе в качестве источника вещества использовать их, то для этого требуется изменение вектора скорости на 3-5 км/с. Соответственно, оптимальный удельный импульс топлива для такого манёвра должен быть 8-10 км/с. При этом на маневрирование будет затрачиваться в сумме около 10 процентов производимой энергии, и в 5-6 раз больше воды, чем будет получено высокоэнергетического вещества с кинетической энергией 2-2,5 ГДж/кг.
   Таким образом, использование в качестве источника ресурсов далёких внешних спутников Юпитера выгодно энергетически, так как затраты энергии на запуск нового цикла будут на уровне 10% энергии, полученной в предыдущем цикле.
   Но есть у такой схемы и недостатки.
   Во-первых, длительность одного энергетического цикла будет достаточно большой, 30-40 суток (надо пролететь более 10 млн км).
   Во-вторых, суммарная масса внешних спутников не так велика, их диаметры от 1 до 5 км, и на очень длительное время их не хватит. Помимо этого, они в основном состоят из силикатных пород, во всяком случае на поверхности. Лёд там если и есть, то где-то в глубине, и не на всех, так как настолько малые тела не могут удержать молекулы водяного пара при сублимации. Поэтому, на длительную перспективу этот источник вещества (в первую очередь воды) видимо не подходит.
   Правда, в качестве самих носителей кинетической энергии можно, и возможно даже предпочтительнее, использовать не лёд, а другие композиции веществ - например, мелкий (нанодисперсный) силикатный песок, с небольшим количеством воды в качестве связующего вещества, либо перекиси водорода, гидразина или химической взрывчатки в качестве распыляющего агента. Однако, для манёвров внутри системы вода в любом случае нужна, и если на мелких внешних спутниках её не окажется, то придётся спуститься ближе к Юпитеру, к более крупным.
   Можно также ловить и использовать в качестве источника ресурсов мелкие кометы, довольно часто пролетающие на расстояниях в несколько миллионов километров от Юпитера; а в более далёкой перспективе - Троянцев и кометы из внешних областей Солнечной системы, но это потребует развитой системы астрономических наблюдений и навигации, и совершения длительных манёвров с использованием большого количества энергии, которую до этого надо где-то добыть. При этом запас вещества в этих источниках на 2 порядка меньше, чем в больших спутниках Юпитера, а время раскрутки энергетических циклов с использованием удалённых объектов будет на 2 порядка больше, чем для спутников внутри системы Юпитера. Поэтому наиболее привлекательным источником сырья в первую очередь являются крупные спутники Юпитера.
  
  
   Из больших, Галилеевых спутников по крайней мере три - Европа, Ганимед и Каллисто - выглядят очень перспективными для добычи воды.
   Массы двух из них больше Луны; вторая космическая скорость для поверхности Каллисто 2,5 км/с, для Ганимеда 2,8 км/с, на Европе 2 км/с.
   Каллисто на половину состоит из льда, а на Европе и, возможно, Ганимеде есть даже жидкий подповерхностный океан глубиной 100-150 км; общий запас воды на Ганимеде и Каллисто составляет 2% от массы планеты Земля, или в 100 раз больше массы всей воды в Земных океанах и ледниках. Вот где надо делать луц...
  
   Каллисто вращается на расстоянии 1,88 млн км от Юпитера со скоростью 8,2 км/с, и чтобы (за один манёвр) вывести с её поверхности груз на кратчайшую эллиптическую траекторию касания атмосферы Юпитера, требуется дополнительная скорость около 7 км/с.
   При использовании обычного ракетного двигателя, и удельном импульсе топлива 10 км/с, затраты топлива составят 50% от начальной массы ракеты, то есть 16 тонн для аппарата такого же веса, и для разогрева топлива потребуется 600 кг носителей кинетической энергии при скорости 67 км/с, то есть 15% энергии, полученной в предыдущем цикле.
   При этом, время достижения атмосферы Юпитера 75 часов (3 суток), что в 10 раз быстрее, чем в случае старта с внешних спутников Юпитера. Таким образом, длительность одного энергетического цикла сокращается в 10 раз, и соответственно возрастает продуктивность используемого оборудования, мощность луцепотока, который можно направить к Земле, а стоимость поставляемой таким образом энергии пропорционально снижается, как и время раскрутки глобального энергетического цикла (включающего стадию доставки нового оборудования с Земли).
  
   Правда, есть нюансы, которые надо учесть.
   Скорость аппарата в нижней точке траектории, на расстоянии 71 тыс км от центра Юпитера, мало зависит от точки старта, и равна 60 км/с; но, в случае попутного движения по отношению к направлению вращения атмосферы Юпитера, эффективность атмосферного варианта термо-кинетического двигателя будет заметно ниже (удельный импульс равен 30% от скорости аппарата относительно атмосферы, которая вращается вместе с планетой со скоростью более 10 км/с), так что, при таком же КПД и тех же затратах рабочего тела, конечная скорость носителей кинетической энергии после ухода на бесконечность будет ниже на 20% (53 км/с, вместо 67 при варианте встречного движения аппарата относительно атмосферы), а запас кинетической энергии соответственно в 1,6 раз меньше, 1,4 ГДж/кг; это означает, что при тех же затратах энергии на возобновление цикла, фактически расход составит 25%, а не 15%, от энергии, добытой в предыдущем цикле; то есть, те же 4 тонны носителей кинетической энергии, будут иметь энергии меньше (5,6 ТДж вместо 9,0 при встречном движении относительно атмосферы); и после вычета 1,5 ТДж на организацию нового цикла, к Земле можно будет направить только 3 тонны вещества, с общей энергией 4 ТДж, вместо 8; правда, при дальнейшем движении по направлению к орбите Земли в гравитационном поле Солнца, эта разница сократится, так что на выходе получится примерно на 20% меньше вещества и на 40% меньше энергии из каждого цикла ускорения, чем в варианте с использованием внешних спутников. Но, поскольку длительность циклов ускорения в 10 раз меньше, чем в случае использования внешних спутников, то всё же скорость поставки энергии будет в несколько раз больше.
  
   Помимо этого, точка пересечения траекторий носителей кинетической энергии с орбитой Каллисто будет смещена далеко от точки старта; причём, в сторону, противоположную орбитальному движению самой планеты. Поэтому придётся использовать несколько заправочных станций, размещённых в разных точках орбиты, и в результате к Земле можно будет направлять, в лучшем случае, не более 50% произведённой энергии.
  
   В целом этот вариант несколько сложнее на начальном этапе, чем при использовании внешних спутников, и даёт на 40% меньший выход энергии за 1 цикл; но благодаря существенно меньшей длительности цикла, он всё же может дать в 2-3 раза большую мощность поставляемого к Земле потока носителей кинетической энергии, при той же массе доставленного с Земли оборудования; при этом запас воды равен бесконечности.
   (Возможно также, что некоторым чисто техническим преимуществом данного варианта является то, что при попутном движении аппарата относительно атмосферы Юпитера скорость, а значит, и температура внешней среды существенно ниже; вырабатываемая при этом энергия тоже меньше, но всё же такой вариант будет немного проще осуществить).
  
   В случае использования не атмосферного варианта термо-кинетического двигателя, с встречным потоком микро снарядов, второй контейнер с половиной топлива необходимо отправлять по встречной ветви эллиптической траектории достижения Юпитера, а для этого (если совершать только 1 манёвр разгона), требуется стартовать с поверхности Каллисто со скоростью 10,7 км/с; при удельном импульсе топлива 10 км/с, потребуется уже вдвое больше топлива, чем масса полезного груза, и вдвое больше энергии для его разогрева, чем для выхода на попутную ветвь такой же эллиптической траектории. Если, для этого варианта, 10,5 тонн груза выводится на попутную вращению Юпитера и Каллисто траекторию, и 5,5 тонн на встречную, то общие затраты дополнительного топлива для старта составят 22 тонны; что касается затрат энергии, то они, вроде как, тоже возрастут на 35%, по сравнению с выводом всей массы груза на попутную эллиптическую траекторию; но, однако же, скорость и энергия получаемых в результате этого носителей кинетической энергии будет больше, чем в предыдущем случае, т.е. точно такая же, как в первом варианте, 67 км/с и 2,3 ГДж/кг; и благодаря этому, данный вариант всё же лучше предыдущего: затраты энергии на возобновление цикла хоть и больше, но составляют 21% от всей вырабатываемой в рабочем цикле энергии, а её в 1,6 раз больше, чем в предыдущем цикле, т.е. 9 ТДж; полезный выход энергии составит 7 ТДж на 1 цикл, т.е. почти столько, сколько и в первом варианте, с внешними спутниками. При длительности энергетического цикла 3 суток, и цикла возврата ракет 6 суток, энергетическая мощность луцепотока, доставляемого на Землю, может быть в 5 раз больше, чем для варианта с внешними спутниками, и в 1,6 раза больше, чем в предыдущем варианте.
  
   В случае, если будет применяться атмосферный вариант двигателя с встречным направлением полёта по отношению к вращению Юпитера, весь полезный груз вначале надо запустить с поверхности Каллисто с начальной скоростью 10,7 км/с, на что уйдёт в 2 раза больше топлива и энергии, чем в попутном варианте, т.е. 30% всей вырабатываемой энергии, количество которой такое же, как в самом первом варианте, 2,3 ГДж/кг. Это, в принципе, тоже приемлемо, хотя уже не так хорошо, как в варианте с внешними спутниками; но общая выработка энергии всё равно будет в несколько раз выше, чем в первом варианте.
  
   В общем, для Каллисто возможен прямой вывод грузов на эллиптическую траекторию касания атмосферы Юпитера, как в попутном, так и во встречном направлении по отношению к движению спутника, на что будет затрачиваться, соответственно, от 20 до 30% вырабатываемой энергии, что позволит создать луцепоток в 3-5 больший, чем в варианте с внешними спутниками (так как затраты энергии больше, но больше и частота циклов).
   Однако, для остальных, более близких к Юпитеру спутников, такой прямой способ вывода на траекторию достижения Юпитера становится более затратным, из-за большей орбитальной скорости.
  
   Орбитальная скорость движения Каллисто составляет 8,2 км/с, на расстоянии 1,88 млн км от Юпитера, с периодом обращения 16,7 суток; для Ганимеда 11 км/с, на расстоянии 1,07 млн км, за 7,16 суток; для Европы 14 км/с, 670 тысяч километров, и 3,55 суток, соответственно; (при этом 3 внутренних Галилеевых спутника - Ио, Европа и Ганимед - находятся в точном резонансе 1:2:4).
   Соответственно, для Ганимеда прямой вывод груза на траекторию снижения к Юпитеру потребует скорости 7,7 км/с в прямом направлении, и 15,3 км/с в обратном, что требует затраты 30-50% всей вырабатываемой энергии, и делает рабочий цикл менее рентабельным, хотя длительность рабочего цикла при этом также сокращается вдвое, и за счёт этого общая выработка энергии всё же может быть на 30-50% больше.
   Для Европы начальная скорость составит 8,0 км/с для вывода груза на попутную траекторию, что тоже приемлемо, и потребует затрат 30% энергии предыдущего цикла; однако это позволит использовать только атмосферный вариант двигателя с попутным направлением движения относительно вращения атмосферы, при этом скорость и энергия получаемых носителей кинетической энергии будет 51 км/с и 1,3 ГДж/кг, т.е. удельная энергия в 1,75 раз меньше, чем в варианте с внешними спутниками; а с учётом больших относительных затрат на возобновление цикла, за 1 цикл будет получено в 2,25 раза меньше энергии, что вроде бы плохо.
   Но длительность цикла в данном случае составит всего 36 часов для возврата ракеты в исходную точку, и 22 часа от старта ракеты до получения луца (правда, он будет получен в другой точке, поэтому потребуется несколько (2 либо 3) дополнительных заправочных станций в разных точках на орбите для возобновления и поддержания энергетического цикла).
   Так как время 1 цикла в 30 раз меньше, чем в варианте с внешними спутниками; энергетический выход 1 цикла в 2,25 раза меньше; и к Земле может быть направлено не более 50% вырабатываемой энергии, то суммарная энергетическая эффективность такой системы, при одинаковой исходной массе используемого оборудования, будет примерно в 5-6 раз выше, чем для схемы с далёкими спутниками; то есть, если для исходного варианта, при общей массе оборудования 100 тонн, можно было направить к Земле 1000 тонн луца в год, при средней удельной энергии 3 ГДж/кг, и суммарной энергии 3х10^^6 ГДж, то для вариантов с Галилеевыми спутниками выработка энергии, и суммарная масса доставляемого к Земле луца, может быть примерно в 5 раз больше.
  
   Для запуска с Европы грузов в направлении, противоположном орбитальному движению спутника, требуется скорость более 20 км/с, что делает такую схему нерентабельной; да и для Ганимеда, при требуемой скорости запуска 15,3 км/с, такой манёвр тоже слишком затратный.
  
   Но можно предложить намного более экономичные варианты вывода полезного груза на требуемые траектории, для чего потребуется больше времени, но зато на порядок меньше топлива и энергии.
  
  
  
  
  
  
   2.3 Гравитационные манёвры в системе спутников Юпитера.
   Как правильно добывать мёд воду.
  
   Систему Юпитера иногда называют "Солнечной системой в миниатюре". И правда, сходство есть: 4 небольших внутренних спутника, потом 4 Галилеевых "спутника-гиганта", и дальше какой-то нерегулярный рой из сотни малых тел. Такое сходство, возможно, не случайно, а обусловлено схожей историей формирования системы: возможно, что во время формирования спутников, сам Юпитер в течении нескольких миллионов лет был вполне полноценной звездой, хоть и маленькой, с температурой поверхности 3-5 тысяч градусов, и мог повлиять на распределение вещества в окружающем пространстве аналогично тому, как это сделало Солнце во время формирования планет.
  
   Если продлить эту аналогию, то манёвр с прямым выводом груза с поверхности больших спутников сразу на траекторию снижения к Юпитеру, аналогичен тому, как если бы мы пытались запустить ракету с Земли прямо к Солнцу, с перигелием в несколько миллионов километров. Это самый быстрый вариант, но для него требуется очень большое изменение скорости.
   Второй вариант - запустить ракету сначала, наоборот, по сильно вытянутой траектории на большое расстояние, затем в дальней точке траектории избавиться от лишнего момента импульса при минимальной затрате топлива, и уже затем ракета может направиться к Солнцу. Это требует в десятки раз больше времени, но зато требуемое изменение скорости вдвое меньше, чем при прямом манёвре.
   Если же в системе есть другие массивные планеты, то можно использовать их гравитационное поле для поворота вектора скорости вообще без затрат топлива, и, в принципе, после нескольких таких манёвров можно получить какую угодно траекторию, в том числе вообще покинуть данную систему. Совершение таких манёвров тоже требует довольно большого времени, но это всё же быстрее, чем второй вариант, и ещё более экономично по затратам топлива.
   В системе Земля-Солнце для гравитационных манёвров чаще всего используют Юпитер, что позволяет произвольно изменить скорость за 1 манёвр без затрат топлива; иногда вначале, чтобы достичь Юпитера с меньшими затратами, используют также многократное прохождение в гравитационных полях Земли и Венеры. В общей сложности такие манёвры длятся от 5 до 10 лет, и требуют начальной скорости при старте с Земли от 14 до 16 км/с, вместо 33 км/с для прямого полёта к Солнцу.
  
   В системе Юпитера есть 4 массивных спутника, 3 из которых к тому же находятся в резонансе, что позволяет, в принципе, произвольно изменять начальную траекторию в широких пределах без затрат топлива. Для этого может потребоваться несколько прохождений вблизи спутников, но, поскольку периоды их обращения невелики, от 1,77 до 16,7 суток, то длительность всего манёвра будет ненамного больше, порядка 10-30 суток.
  
   Вариантов здесь много, но мне кажется, что в качестве основного лучше выбрать вариант с предварительным выводом запаса топлива (в виде большой массы льда) на сильно вытянутую траекторию, с большой полуосью 670 тысяч километров, и периодом обращения, равным или близким к периоду обращения Европы, т.е. примерно 3,5 суток. (назовём эту опорную траекторию "Базовая траектория с периодом 1:1", или "Европа-Б 1:1")
   Минимальное удаление от центра Юпитера должно быть около 80 тысяч километров, т.е. минимальная высота, на которой атмосфера не создаёт помех движению. Максимальное удаление, соответственно, около 1,26 млн км, т.е. немного выше орбиты Ганимеда. (хотя возможны варианты выбора базовых траекторий с меньшим максимальным расстоянием, и меньшим периодом, находящимся в кратном отношении с периодом Европы, для регулярной повторной доставки топлива при одной и той же повторяющейся конфигурации планет для совершения манёвров).
  
   Вначале груз с поверхности Европы выводится, возможно по частям, непосредственно на стартовую траекторию А, которая в нижней точке касается орбиты Европы, т.е. нижняя точка траектории находится на расстоянии 670 тыс км от Юпитера; а верхняя на расстоянии 1,3 миллиона километров от Юпитера, то есть начальная траектория пересекает орбиту Ганимеда и поднимается на 200-250 тысяч километров выше его орбиты, с большой полуосью 1 млн км, и периодом обращения 6,5 суток.
   Для того, чтобы перейти на такую промежуточную траекторию с круговой орбиты Европы, требуется добавочная скорость всего 2,2 км/с; если стартовать с поверхности Европы, то требуется начальная скорость 3,0 км/с. И это все затраты топлива и энергии, которые потребуются.
  
   Далее траектория раскачивается за счёт нескольких прохождений вблизи Ганимеда, Европы, а затем и Ио, и через 2-3 оборота превращается в сильно вытянутую траекторию Б, описанную выше, синхронную с временем оборота Европы; хотя, возможны и варианты с другим соотношением периодов оборотов, например 2:3, 3:5 или 3:4, что позволит иметь на такой траектории несколько (от 2 до 5-6) заправочных станций, на которые можно будет повторно доставлять топливо через определённые регулярные промежутки времени в 15-30 суток. Переход с траектории А на траекторию Б (или одну из упомянутых) за счёт серии гравитационных манёвров займёт 15-20 суток, и не потребует затрат топлива, за исключением небольших корректировок отклонений, в пределах нескольких метров в секунду.
   При этом конфигурация расположения всех спутников (кроме Каллисто) будет повторяться каждые 7,16 суток, что позволит осуществлять одну и ту же оптимальную последовательность манёвров для доставки каждой новой партии топлива.
  
   Поскольку начальная скорость, необходимая для старта с поверхности спутников и вывода на промежуточную траекторию, невелика (для Европы 2,97 км/с), то для запуска топлива гораздо выгоднее использовать не ракеты, а газовую катапульту. При этом, отпадает необходимость возить, и затем возвращать назад, топливные баки и двигатель; весь груз на 100% состоит из полезного вещества (льда), КПД разгонной системы может быть до 50%, и пропускная способность такой системы доставки будет в 10-20 раз выше, при равных затратах на оборудование, чем у ракетной.
  
   Равновесная температура в системе Юпитера составляет около 120 К (от 30 К на теневой стороне до 180 на солнечной), что позволяет короткое время (несколько часов) хранить водяной лёд вообще без оболочки. Для более длительного хранения можно использовать оболочку из тонкой металлизированной полимерной плёнки толщиной менее 1 мкм, предохраняющей лёд от нагревания и сублимации; масса такой плёнки может составлять 1 грамм на квадратный метр, что позволяет завернуть в плёнку весом 1 кг более 1000 тонн льда.
   При большей жадности, можно использовать плёнку повторно, либо покрывать поверхность льда антисублимационным адгезионным слоем толщиной менее 1 нм из полимерной смолы, металла или графена, тогда в 1 кг защитного покрытия можно вместить несколько миллионов тонн...
  
   Для приведения в действие газовой катапульты лучше использовать водород, который при температуре 3000-3500К даст скорость снаряда более 3 км/с; правда, водород придётся вначале добыть из воды; но его надо добыть только 1 раз. Я надеюсь, каждому должно быть понятно, что у цивилизованных людей пушка должна быть снабжена системой отсечки газов в момент выхода снаряда из ствола, так что потери газа в космос при каждом выстреле должны быть, во всяком случае, меньше 1%. Потом горячий газ из ствола надо будет переместить в резервуары охлаждения, где он используется для нагрева воды или плавления льда, если есть такая необходимость, так что общий КПД всей планетарной энергетической и добывающей системы может достигать 100%; после охлаждения до 200-300К, водород сжимается и снова подаётся в резервуары нагрева, для следующего выстрела. Сжижать водород в данном случае не целесообразно, так как это увеличит расход энергии и вес используемого оборудования.
  
   Резервуар из стали или титана, на 1 кг своего веса, может вместить газ с объемной энергией 100 кДж, и энтальпией более 300 кДж. При массе ствола пушки 10 тонн, для выстрела может быть использована энергия более 1 ГДж, из которой 500 МДж может быть передано снаряду, что позволит разогнать до скорости 3 км/с снаряд массой 110 кг, т.е. 1% от массы пушки.
   При использовании высокоэффективных конструкционных материалов массу пушки можно сократить ещё в 5-10 раз, но мы не будем жадничать, и примем, что пушка весом 10 тонн сможет разогнать ледяной снаряд весом 100 кг до скорости 3,0 км/с, с кинетической энергией 450 МДж; (диаметр снаряда 50 см при длине в 60 см; можно сделать снаряды не в виде круглого цилиндра, а шестигранной призмы, для последующей плотной упаковки при хранении). Вместе со всем вспомогательным оборудованием такой стартовый комплекс может весить 20-30 тонн.
   При этом темп стрельбы будет в основном определяться мощностью и пропускной способностью системы охлаждения и повторного сжатия газа. После каждого выстрела для охлаждения газа необходимо утилизировать 650 МДж тепловой энергии, за счёт которой можно расплавить 1,5 тонны льда, либо нагреть 1,5 тонны воды на 100 градусов, либо испарить 200 кг воды. Вероятно, оптимальной будет схема, при которой газ вначале, при температуре 2000К и начальном давлении 10-20 МПа, совершает работу в газовой турбине, расширяясь в 10-12 раз по объёму, при этом часть вырабатываемой энергии сразу же идёт на сжатие уже охлаждённого газа при температуре 300К до 50-100 МПа. Удельная мощность такой системы может превышать 100 кВт на 1 кг веса, так что при массе 5 тонн такой турбо компрессорный агрегат может иметь тепловую мощность более 500 МВт, и утилизировать весь газ в течении 1 секунды после выстрела.
   После охлаждения газа до 800К в турбине, остаток тепловой энергии направляется на нагрев большой массы циркулирующей воды из большого подлёдного теплового резервуара, и затем может использоваться в течении длительного времени. При этом некоторая часть тепловой энергии (5-6% от всей первоначальной энергии нагрева, то есть 50 МДж за 1 выстрел) может быть передана резервуару с высокотемпературным рассолом и более высоким тепловым потенциалом, 600-800К, и затем в течении нескольких суток может использоваться для извлечения некоторой доли запасённой тепловой энергии в виде механической или электрической, что решит проблемы энергоснабжения добывающего комплекса на поверхности Европы, а также позволит обогревать оборудование на поверхности.
  
   В целом стартовый комплекс представляет собой тепловую машину, в которой рабочий газ (водород) совершает замкнутый цикл, с максимальной температурой 3000К и минимальной 300К. При этом 40% энергии нагрева может быть передано снаряду; 35% идёт на нагрев теплового резервуара-холодильника (причём небольшую часть этой энергии можно потом дополнительно извлечь в виде электрической); и 25% сразу преобразуется турбиной в механическую и электрическую энергию, которая может быть использована для электролиза и других нужд. (то есть, в начале турбина извлекает в виде полезной работы 60-65% остаточной внутренней энергии газа, то есть 35% всей начальной энергии нагрева; но потом 1/3 этой энергии снова затрачивается на сжатие газа, охлаждённого до 300К, так что полезный выход энергии составит 20-25% от энтальпии начального нагрева газа.
   Для нагрева газа можно использовать высокоэнергетические носители кинетической энергии (мы же их делаем). Атмосфера Европы, по-видимому, достаточно разреженная для того, чтобы микро снаряды со скоростью 50-70 км/с могли с приемлемой точностью достигать приёмного устройства непосредственно на поверхности. Далее кинетическая энергия микро снарядов может либо вначале конвертироваться в электрическую в МГД-генераторе, либо использоваться непосредственно в виде тепловой энергии, для нагрева либо непосредственно рабочего газа, либо промежуточного подвижного высокотемпературного теплоносителя, либо неподвижного аккумулятора тепла. При кинетической энергии (100 килограммового) снаряда 450 МДж, для нагрева при каждом выстреле потребуется 1,1 ГДж, или 11000 ГДж на всю партию в 1000 тонн, (т.е. будет затрачена 1 партия луца-67, при массе 4 тонны и общей энергии 9000 ГДж).
  
   Таким образом, артиллерийский стартовый комплекс весом в 20-30 тонн может каждую секунду отправлять на стартовую траекторию 100 кг льда, или 1000 тонн за 3 часа.
   Затем эти снаряды 2,5 суток (60 часов) летят по промежуточной траектории до точки первого гравитационного манёвра вблизи Ганимеда. При некоторой разнице скоростей, порядка 30-50 метров в секунду, все снаряды, выпущенные с поверхности Европы на протяжении 3 часов, могут собраться в плотный рой, и затем эти 1000 тонн льда могут быть упакованы в один контейнер (мешок из тонкой плёнки). Для совершения точных микро манёвров каждый снаряд первоначально может иметь навигационный комплекс весом до 100 граммов (их потом можно вернуть на стартовую позицию для повторного использования). Для сбора и упаковки снарядов могут использоваться несколько микро буксиров весом до 1 кг, снабжённые тросовыми системами для захвата объектов.
   После того, как 1000 тонн льда собраны в один контейнер, его дальнейшую буксировку может осуществлять небольшой орбитальный тягач, весом 100 кг, с запасом двухкомпонентного топлива до 10 тонн (лучше использовать кислородно-метановое или гидразиновое топливо, так как при температуре 50К его можно хранить вообще без баков, в полиэтиленовом пакете. Расход топлива при гравитационных манёврах почти равен нулю, так как буксир должен только обеспечивать точную корректировку траектории.
   Через 15-20 суток очередная партия топлива будет доставлена на заправочную станцию на базовой траектории, а тягач отправится назад (для экономии времени можно использовать остаток топлива, так что цикл повторного использования орбитального тягача будет около 30 суток).
   Таким образом, если отправлять партию в 1000 тонн льда 1 раз за 2 полных оборота Европы вокруг Юпитера (2х3,55 суток), то на базовую станцию будет прибывать 4000 тонн льда в месяц, и для обслуживания такого маршрута понадобится 4-6 орбитальных тягачей весом по 100 кг.
  
   При этом, если использовать базовую траекторию, синхронную по периоду с Европой 1:1, то на ней можно разместить только 1 базовую заправочную станцию, и новые партии льда будут прибывать на неё 1 раз за 7,16 суток, всегда в одной и той же точке траектории.
   Возможно, лучше использовать более короткую базовую траекторию, с периодом 2-3 суток, и отношением к периоду обращения Европы 3:4, 3:5, 3:7, 5:7 и т.д; тогда новые партии топлива будут прибывать поочерёдно в несколько разных точек на базовой траектории, которых может быть от 2 до 10, и соответственно в этих точках можно разместить топливные базы, которые будут получать лёд 1-2 раза в месяц.
   Кроме основной, потребуется ещё одна аналогичная базовая траектория, повёрнутая относительно первой на большой угол, 30-60 градусов. На этой второй траектории тоже должно быть несколько топливных баз, на которые доставляется примерно в 10 раз меньше льда, чем на основные, и которые служат для возобновления энергетического цикла. Основная базовая траектория должна быть ориентирована под определённым углом к направлению на Солнце, таким образом, чтобы производимый луц всегда направлялся в заданную точку на орбите Земли. По мере движения Юпитера вокруг Солнца ориентацию большой оси базовой траектории необходимо будет постепенно изменять, тогда к Земле можно будет направлять почти 100% производимого луца. Для поворота большой оси базовой траектории (на 2,5 градуса в месяц) без затрат топлива можно использовать гравитационные манёвры, а также избыточный импульс прибывающих партий топлива (или просто выводить новые партии льда на немного смещённую траекторию, а оборудование баз перемещать на неё за счёт дополнительных манёвров).
  
   Для эффективного осуществления гравитационных манёвров запуск топлива с поверхности Европы должен осуществляться в пределах не очень большого окна по времени, порядка 5% времени каждого второго оборота, т.е. в течении 3 часов за 7,16 суток. За это время (описанный ранее) стартовый комплекс успеет выпустить 10 тысяч снарядов по 100 кг, т.е. 1000 тонн за раз, или 4000 тонн в месяц.
  
   Возможно, что при наличии более чем одной базовой траектории и нескольких станций на каждой из них, удастся рассчитать несколько альтернативных последовательностей гравитационных манёвров для доставки льда, тогда время эффективного использования стартового комплекса увеличится в 2...10 раз, что является определяющим фактором для производительности всей системы. Но мы пока примем, что доставка льда осуществляется 1 раз за 2 полных оборота Европы, т.е. 4000 тонн месяц.
   Для обслуживания каждой топливной базы потребуется несколько тонн оборудования, основная функция которого будет состоять в том, чтобы сформировать топливные гранулы весом 1-10 граммов и расфасовать их по контейнерам (пакетикам) весом от 500 граммов (для использования внутри системы) до 10-100 килограммов (для отправки к Земле), снабжённым автономной системой навигации. В сумме для обслуживания всей топливной системы потребуется, возможно, 10-20 тонн оборудования, включая системы обработки, хранения и загрузки топлива, а также орбитальные тягачи.
  
   Получение солнечной электроэнергии для работы оборудования в системе Юпитера является больным вопросом, так как поток солнечной энергии в 25-30 раз меньше, чем на орбите Земли. Но при грамотном проектировании и использовании солнечных батарей с плёночными концентраторами, можно получить мощность порядка 1 кВт на 1 кг веса солнечной батареи, при площади концентратора 100 кв.м. (правда, конструкции солнечных панелей будут очень лёгкими и хрупкими, так что при ускорениях более 0,1 м/с они будут ломаться от собственного веса, но в невесомости на стационарных орбитальных станциях их можно применять). Тогда для обеспечения постоянной работы каждой топливной станции (в предположении, что надо полностью расплавить весь поступающий лёд) потребуется постоянная мощность электроснабжения 100 кВт, для чего нужна солнечная панель площадью 10000 кв.м, и массой 100 кг.
  
   Рабочие ракеты, непосредственно осуществляющие манёвры для доставки носителей кинетической энергии к Юпитеру и их разгона с помощью термо-кинетических двигателей (т.е. основной цикл производства луца), будут постоянно обращаться по вытянутой траектории касания атмосферы (траектория С), синхронной по времени с траекторией Б (с периодом около 3 суток), и с минимальной высотой 72 тысячи километров. При этом каждая рабочая ракета всегда будет заправляться на одной и той же топливной базе. В наиболее удалённой от Юпитера точке разница скоростей между траекториями Б и С будет порядка 100 м/с, и партию топлива в 15 тонн для заправки одной рабочей ракеты сможет перевозить тягач массой 100 кг с запасом двухкомпонентного топлива 500 кг для осуществления данного манёвра и возвращения на базу.
   Если, как в самом первом варианте, использовать для разгона вблизи Юпитера рабочие ракеты весом по 1 тонне, способные взять за раз 15 тонн топлива и произвести 4 тонны носителей кинетической энергии, то за месяц каждую из них можно будет заправить 8-12 раз (в зависимости от выбранного периода базовой траектории), т.е. одна рабочая ракета может переработать в луц 15*10 = 150 тонн льда в месяц (от 120 до 180 тонн, в зависимости от периода базовой траектории; именно поэтому более короткая базовая траектория лучше). Для переработки 4000 тысяч тонн льда в месяц потребуется 25-35 рабочих ракет.
  
   Таким образом; масса добывающего и стартового комплекса на поверхности Европы 30 тонн; масса всего орбитального и вспомогательного оборудования 20 тонн; масса рабочих ракет 25-35 тонн. Всего выходит 80-90 тонн оборудования, которое надо первоначально доставить с Земли в систему Юпитера. После этого в сторону Земли можно будет направлять 1000 тонн луца в месяц (со скоростным фактором 70 км/с либо 55 км/с на расстоянии 10 млн км от Юпитера, в зависимости от схемы разгона); то есть, 12000 тонн луца в год, со скоростью после удаления от Юпитера 50-70 км/с, и соответственно 70-80 км/с при пересечении орбиты Земли. Скорость встречи с Землёй будет меняться в зависимости от текущего вектора скорости Земли, но тут возможны варианты, позволяющие регулировать начальную скорость, и соответственно срок доставки в пределах 3-6 месяцев, так что примерно половину всех поставляемых к Земле носителей кинетической энергии можно будет использовать при максимальной скорости и энергии, более 100 км/с. При этом средняя энергия поставляемого луца будет 3-4 ГДж/кг.
  
   Данный вариант является самым производительным из всех ранее рассмотренных, так как обеспечивает луцепоток в 10-15 раз больше, чем при использовании далёких внешних спутников, и в 2-3 раза больше, чем при прямой доставке воды с Галилеевых спутников сразу к Юпитеру. При этом экономичность тоже самая высокая, так как на возобновление цикла тратится всего 1,5% производимой энергии, (вместо 10% для варианта с далёкими спутниками, и 20-30% при прямой доставке с Ганимеда или Каллисто).
  
   Мы именно поэтому на нескольких предыдущих страницах уделили столько внимания излишне подробным расчётам системы доставки, чтобы каждый мог убедиться, что, действительно, тратится 1,5% энергии, и получается луцепоток 12000 тонн в год, при массе оборудования 100 тонн.
  
  
   Теперь мы можем сравнить мощность луцепотока и стоимость энергии, доставляемой таким способом к Земле, с другими вариантами.
  
   Отправив к Юпитеру один добывающий комплекс весом 100 тонн, можно будет ежегодно получать 12000 тонн носителей кинетической энергии (для которых мы украли придумали короткое и понятное название - "луц", потому что это экономит 90% букв в названии).
   При средней кинетической энергии луца 3 ГДж/кг это позволит вывести на околоземную орбиту в 50 раз большую массу груза (пол миллиона тонн);
   либо можно отправить обратно к Юпитеру в 10 раз больший груз, по отношению к массе полученного луца (12000 тонн х 10 =120.000 тонн в год), то есть, проще говоря, в 1000 раз больше, чем уже было отправлено.
  
   Начав с запуска единственного корабля на химическом топливе, за 9 лет мощность энергетического цикла можно нарастить в миллион раз, (в 1000 раз каждые 3 года, +3 года ожидания доставки первой партии)...
  
   Мне кажется, 12 миллиардов тонн луца в год нам поначалу хватит.
   Это всего 12 кубических километров экологически чистой воды; но летящей с очень большой скоростью.
  
   1 миллиард тонн луца со скоростным фактором 100 км/с заменит по выделяемой энергии 50 тысяч тонн урана-235, (или 7 миллионов тонн природного урана). И работу 5 тысяч средних атомных электростанций, типа Фокусимы и Чернобыля. Но, это вода. Просто вода, даже не тяжёлая. Никаких излучений, никаких изотопов. В миллиард раз чище всего, что можно придумать, включая гелий-3, который, вроде, в 1000 раз дороже золота, и за которым придётся лететь вообще к Плутону.
  
  
   Мы можем оценить стоимость получаемой таким образом энергии.
  
   Каждый килограмм структурного вещества (ракет, добывающих установок), доставленный в систему Юпитера, ежегодно будет возвращать к Земле 120 кг вещества при скорости от 50 до 100 км/с, с кинетической энергией от 1 до 5 ГДж/кг, в среднем 3 ГДж/кг. Стоимость перевозки оборудования к любой планете, после раскрутки системы, станет почти равной нулю (равна стоимости сопла для использования внешнего топлива, плюс распределённой инфраструктуры управления и навигации).
   Таким образом, стоимость установленного в системе Юпитера оборудования, вместе с доставкой, будет мало отличаться от исходной стоимости производства этого оборудования на Земле.
   Оценим стоимость 1 килограмма оборудования в 1000 долларов. Тогда, в расчёте на окупаемость за 5 лет, оно доставит обратно к Земле 600 килограммов луца, с суммарной энергией 1800 ГДж. Стало быть, цена этой энергии и есть 1000 долларов; 1,8 ГДж энергии тогда стоят 1 доллар; а 3,6 МДж, соответственно, 0,2 цента.
  
   0,2 цента за 1 кВт*час - то есть в 50 раза дешевле, чем стоит выработка электроэнергии на Земле сейчас.
  
   Это уже не только космические запуски по 10 центов за килограмм груза, на воде из речки, и билет на Луну в викенд за 50 долларов.
   И не только колонизация и кондиционирование планет Солнечной системы в течении следующих 20-30 лет.
   Такая цена энергии позволит радикально изменить количество и качество энергопотребления на Земле, вывести с Земли 90% вредных и энергоёмких производств, и наконец превратить Землю в действительно приятное место для жизни 50-100 миллиардов умных, красивых и трудолюбивых каких-нибудь людей.
   Имея пристойное энергоснабжение, можно убрать лёд из антарктиды (потому что мешает апельсиновым рощам), и перевезти его в Сахару, Гоби, и (если сильно попросят) неваду. Над Норильском я предлагаю зажечь маленькое экологически чистое солнце на 40 ТВт, на высоте километров 50, и включать его полярной ночью, для повышения урожая апельсинов.
   В общем, иметь на планете всего 5% пригодной для жизни площади поверхности - как-то уже стыдно должно быть, в третьем тысячелетии...
  
   Конечно, надо будет следить, чтобы школьники на каникулах могли не только слетать на Уран, но и продолжали усердно учиться... и да, отобрать у них смартфоны (а все убытки взыскать с людей, которые продавали им алкоголь, наркотики, смартфоны и т.д. На марс их, сожать яблони.).
  
  
  
  
  
  
   3. Луц для бедняков. (технология получения носителей кинетической энергии со скоростью 40-70 км/с без использования темо-кинетических двигателей, с помощью только обычных ракет на химическом топливе).
  
   Предположим, что есть где-то во Вселенной не очень умная расса гуманоидов, которая так и не сможет создать работоспособный термо-кинетический двигатель, хотя бы атмосферный. (может быть, у них особи с меньшей массой мозга размножались быстрее и в конце концов заняли 100% жизненного пространства, или по какой другой причине, но вот не могут они изобрести термо-кинетический двигатель - и всё).
   Но они, тем не менее, очень хотят луц.
   Посмотрим, как это можно сделать...
  
   Возьмём описанную выше систему добычи топлива в системе Юпитера, но при этом 75% воды будем сразу превращать в двух компонентное химическое горючее (лучше бы кислородно-метановое, но в крайнем случае можно кислородно-водородное, хотя его сложнее хранить).
   Вывод топлива на промежуточную траекторию будем осуществлять пушкой, как и раньше; правда, это теперь будет несколько сложнее сделать. Водяной лёд, при температуре 50К, имеет прочность плохой стали (150-200 МПа на сжатие), и больших проблем при пушечном запуске не создаст; замороженный метан (если бы он у нас был) тоже можно запустить из пушки. С кислородом это уже сложнее; при 55К он правда замерзает, но о какой-либо значительной прочности говорить не приходится. При более низкой температуре (10-20К) замороженный кислород всё же можно, в принципе, запускать из пушки в лёгком прочном баке, но ускорение в стволе придётся уменьшить в несколько раз, а длину ствола, соответственно, увеличить до сотен метров, что уже влечёт дополнительные технические сложности и увеличение массы пушки.
  
   С водородом всё совсем плохо. Чтобы его получить хотя бы в жидком виде, надо 20К, а чтобы заморозить, 14К. Само по себе это ещё не проблема: до 50К газ можно охлаждать бесплатно, в больших радиаторах на ночной стороне планеты, а затем сжижать и охлаждать до 10К за счёт энергии, вырабатываемой основным оборудованием стартового комплекса.
   Проблема в том, что "твёрдый" водород, даже при 10К, вовсе не твёрдый, и из пушки его можно запустить разве только в очень прочном баке, как жидкость. При этом он имеет плотность в 10-12 раз меньше воды, и бак понадобится большой.
   Здесь есть несколько вариантов, как справиться с этой бедой.
   Возможно, что проще всего будет запускать воду и кислород из пушки, а водород отдельно, сразу в большом баке, с помощью ракеты на жидком двухкомпонентном топливе; вес водорода составляет всего 9% от всей массы льда и топлива, и дополнительный расход топлива для его разгона до 3 км/с будет тоже того же порядка, до 10% от всей массы добываемого топлива, что в принципе приемлемо. Правда, потом надо будет ещё возвращать обратно пустые баки для повторного использования.
   Второй вариант, запускать замороженный или жидкий водород всё-таки из пушки, в очень прочных баках. Но этот вариант хуже, так как потом ещё придётся перемещать его в жидком виде из маленьких баков в большие, и снова охлаждать для длительного хранения... в первом варианте, он сразу в большом баке, при минимальной теплоизоляции можно хранить пару лет без затрат на охлаждение (особенно если вначале заморозить).
   Третий вариант - везти с Европы только лёд, и хранить на базовых станциях в виде льда, а затем перерабатывать в кислородно-водородное топливо непосредственно перед заправкой рабочих ракет. Идеальный вариант по простоте системы доставки и хранения; но тогда потребуется в 50-100 раз большее энергоснабжение базовых орбитальных станций, для электролиза 4 тонн воды в час, т.е. 20 МВт. При продуктивности солнечных панелей (1 кВт на килограмм веса и 100 м2 площади), потребуется дополнительно 20 тонн солнечных панелей, при площади 2 квадратных километра. И несколько десятков тонн оборудования для электролиза и сжижения продуктов. Можно сделать, но сложно и дорого...
   Для электроснабжения орбитальных заправочных станций можно использовать луц (мы же его и делаем для получения энергии), но это тоже сложно, потребует дополнительного оборудования для преобразования энергии, и поступление энергии будет непостоянным.
  
   Видимо, самый простой и рациональный всё же первый вариант: запускать воду и кислород в замороженном виде из пушки, а водород отдельно, с помощью ракеты на жидком топливе, при этом дополнительный расход топлива составит 10% от всей массы добываемого топлива. При общей массе доставляемой за раз партии топлива 1000 тонн, будет всего 250 тонн льда, 650 тонн замороженного кислорода, и 80-90 тонн жидкого или замороженного водорода, который поместится в бак объёмом 1000-1200 м3.
   При диаметре 10 метров и длине 15, такой бак из стали толщиной 1 мм будет весить 6 тонн, то есть вес бака вместе с водородом менее 100 тонн. Что касается теплоизоляции, то она, в принципе, не нужна: при мощности прямого солнечного излучения 50 Вт/м2 (на расстоянии 780 млн. км от Солнца), бак с металлическим покрытием, имеющим коэффициент отражения 0,95 для видимого света и 0,99 для инфракрасного излучения, даже под прямыми лучами солнца будет поглощать 2 Ватта на м2, т.е. 300 Ватт на 150 м2; при этом будет испаряться 0,7 грамма водорода в секунду, или 2,5 кг в час, то есть до 2 тонн в месяц; это 2,5% от общего количества, то есть дальше с теплоизоляцией можно не заморачиваться. Но, если хочется, чтобы всё было "культурно", то можно разместить со стороны Солнца дополнительный тепловой экран, в виде листа фольги на расстоянии в несколько десятков метров. Это снизит тепловую нагрузку ещё в 100 раз, и потери жидкого водорода на испарение до 2-3% за 10 лет хранения.
  
   Прочность бака диаметром 10 м из стали толщиной 1 мм позволяет выдержать внутреннее давление 200 кПа, что достаточно при температуре жидкого водорода до 22К. При ускорении 10 м/с добавочное давление жидкого водорода на дно бака составит 15 кПа.
   Для запуска такого бака с водородом, массой 90-100 тонн, с поверхности Европы, понадобится 1 "большая" ракета-носитель на двухкомпонентном топливе, сухим весом 2-3 тонны и с полной стартовой массой 100 тонн. (вероятно, это будет один из блоков последней ступени, доставившей всё оборудование в систему Юпитера).
   При стартовом ускорении 10 м/с2 (а больше на Европе не надо), траектория разгона будет иметь длину 500 км; после разгона до 3 км/с бак с водородом отделяется, а сама ракета должна снова затормозить до 1,4 км/с, чтобы перейти на круговую траекторию, и совершив один виток вокруг Европы снова прибыть на стартовую позицию (мы уже знаем, что это можно сделать, в принципе, без затрат топлива).
  
  
   Таким образом, сложность доставки двухкомпонентного топлива несколько возрастёт, по сравнению с доставкой льда, но в целом это обойдётся примерно в 50-100 тонн дополнительного оборудования, включая энергетическое оборудование, машины для электролиза и сжижения газов, баки для хранения водорода и ракеты для его доставки.
  
   При этом расходы энергии на производство и запуск топлива с поверхности Европы возрастут в 3 раза (1 ГДж для запуска 100 кг топлива с помощью пушки, и 1,5 ГДж для переработки 75% воды в кислород и водород, всего, округлённо, 3 ГДж энергии на 100 кг груза, т.е. 30 МДж на килограмм (при этом 25% груза, доставляемого на орбитальные заправочные станции, составляет лёд, и 75% двухкомпонентное ракетное горючее).
  
   Дальше, как и раньше, доставляем всё это без затрат топлива (за счёт гравитационных манёвров) на промежуточную траекторию, и загружаем в рабочие ракеты, которые, как и раньше, летят к Юпитеру, проходя на минимальном возможном расстоянии от него, со скоростью 60 км/с.
   В нижней точке траектории ракета вначале имеет скорость 58 км/с, и кинетическую энергию 1700 МДж/кг, которая почти равна (со знаком минус) потенциальной энергии в гравитационном поле Юпитера (минус 1800 МДж/кг), так что полная энергия вначале равна -100 МДж/кг (полная энергия отрицательна, потому что ракета прилетела не из бесконечности, а с расстояния 1,25 млн км, и движется вначале по замкнутой эллиптической траектории).
   Затем ракета включает двигатель, тратит 69% своей массы (11 тонн из 16) в виде топлива с удельным импульсом 4,5 км/с, и изменяет свою скорость на 5,2 км/с, так что новая скорость составляет 63,2 км/с, а кинетическая энергия 2000 МДж/кг. Полная гравитационная энергия, по отношению к бесконечному расстоянию от Юпитера, таким образом, составляет теперь (2000-1800) = +200 МДж/кг.
  
   Энергия небольшая, но положительная! То есть, остаток топлива (или льда) может теперь покинуть систему Юпитера, и даже на бесконечном расстоянии от него (то есть более 10 миллионов километров) будет иметь скорость 20 км/с. Не 70, но этого достаточно, чтобы долететь до Земли (если покинуть систему Юпитера в направлении, противоположном его движению вокруг Солнца). Поскольку орбитальная скорость движения Юпитера вокруг Солнца равна 13 км/с, то при начальной скорости 20 км/с относительно него, можно достичь любой точки орбиты Земли, в том числе во встречном направлении. (Понятно, что саму ракету сразу после отделения кассет с топливом надо снова затормозить в атмосфере Юпитера, вернув на базовую эллиптическую траекторию для заправки).
  
   Посмотрим, хватит ли полученной энергии для запуска следующей партии топлива с Европы и возобновления энергетического цикла.
   При пересечении орбиты Европы, на расстоянии 670 тысяч километров от Юпитера, носители кинетической энергии будут иметь запас кинетической энергии на 200 МДж/кг больше, чем на бесконечности; то есть их кинетическая энергия вблизи Европы будет 400 МДж/кг, а скорость 28 км/с, что уже не так плохо.
  
   В действительности, скорость, и кинетическая энергия, носителей кинетической энергии при встрече с Европой будет зависеть от того, по встречной или попутной базовой траектории происходил разгон. При встречном направлении траектории по отношению к орбитальному движению Европы, относительная скорость будет 34,3 км/с, и кинетическая энергия 590 МДж/кг; при попутном - только 28,2 км/с, и 400 МДж/кг. То есть, хотя на встречную ("ретроградную") промежуточную траекторию сложнее выйти (потребуются дополнительные манёвры и больше времени), но это может дать в 1,5 раз больше энергии на поверхности Европы; хотя потом, после выхода из гравитационного поля Юпитера, никакой разницы не будет.
  
   Тем не менее, мы видим, что в любом случае на возобновление энергетического цикла тратится от 20 до 30% всей производимой энергии (с учётом того, что масса получаемого луца в 4 раза меньше, чем начальная масса топлива); то есть такая система работоспособна, и может выводить за пределы системы до 70% производимых носителей энергии.
   Правда, скорость этих носителей будет не очень большая (20 км/с относительно Юпитера после ухода от него на 10 миллионов километров), что как раз позволяет выйти на траекторию пересечения с орбитой Земли в любой её точке, в том числе во встречном направлении по отношению к орбитальному движению Земли; но после дополнительного ускорения в гравитационном поле Солнца (при перемещении с расстояния 780 до 150 миллионов километров) добавится 700 МДж/кг, и скорость относительно Солнца возрастёт до 39 км/с. При этом максимальная скорость встречи носителей с Землёй будет 69 км/с (при встречном направлении траекторий), и соответственно кинетическая энергия до 2400 МДж/кг, что уже неплохо.
   В результате, хотя начальная кинетическая энергия носителей относительно Юпитера меньше в 10 раз, но после дополнительного ускорения в гравитационном поле Солнца, и прибавки орбитальной скорости движения Земли, эта разница нивелируется, и на выходе получается кинетическая энергия 2,4 ГДж/кг, т.е. всего в 1,5 раза меньше, чем в самом лучшем варианте с термокинетическими двигателями.
   Правда, такая встречная скорость будет достигаться только на небольшом участке орбиты Земли, в течении 1-2 месяцев в году. Но, поскольку в данном варианте время движения носителей от Юпитера к Земле составляет 2-2,5 года, и может регулироваться в пределах 10-20%, то практически можно добиться того, чтобы 100% производимых в течении года носителей кинетической энергии достигали Земли почти одновременно, в течении 1-2 месяцев, и с максимальной возможной скоростью и энергией.
  
   В результате количество доставляемого к Земле луца будет всего в 1,4 раза меньше, чем в самом лучшем рассмотренном варианте (при использовании термокинетического двигателя с удельным импульсом 25-30 км/с); кинетическая энергия носителей по прибытии к Земле в 1,5 раз меньше; а общая доставляемая энергия всего в 2-2,5 раза меньше.
  
   Здесь, правда, надо учесть, что масса используемого оборудования для данного варианта тоже больше примерно в 2 раза, поскольку нужно дополнительное оборудование для получения двухкомпонентного ракетного топлива, его хранения и доставки. То есть, в расчёте на те же начальные 100 тонн оборудования, доставленные к Юпитеру, выработка луца будет ещё в 2 раза меньше; т.е. масса доставляемого к Земле луца будет в 3 раза меньше, при тех же начальных расходах, чем для самого лучшего из рассмотренных вариантов, а мощность потока энергии в 4-5 раз меньше. То есть, 100 тонн оборудования в системе Юпитера смогут поставлять к Земле "всего лишь" 4000 тонн луца в год, при скорости до 70 км/с и удельной кинетической энергии 2,4 ГДж/кг.
  
   Но здесь не используется термокинетический двигатель, для разгона носителей энергии применяются только ракеты на химическом горючем (хотя наличие стационарных приёмников луца всё же предполагается).
   Тем не менее, результаты не хуже, чем в самом первом варианте (с использованием далёких спутников, даже при наличии термо-кинетического двигателя): удельная энергия носителей в 1,5 раза ниже, но масса в 5-6 раз больше, так что мощность системы, при тех же расходах, будет выше в 3-4 раза. (А мы помним, что первый вариант мы оценивали как "фантастически хороший", пока не увидели второй).
  
   Луц можно добывать, используя обычные ракеты на кислородно-водородном топливе. Это можно сделать, хотя и не просто. Скорость раскрутки системы будет почти такой же, и для освоения ближайших планет хватит даже "медленного" луца при скорости 40-70 км/с. Правда, мощность потока доставляемой к Земле энергии будет в 5 раз ниже, при тех же начальных затратах, чем в самом лучшем из рассмотренных вариантов; и соответственно, стоимость энергии будет как в первом варианте, около 1-2 центов за 1 кВт*час. Революцию в наземном энергоснабжении это, пожалуй, не сделает, но вытягивать на околоземную орбиту пару миллиардов тонн груза в год позволит, при цене доставки 1 доллар за килограмм.
  
  
  
  
   ***
   На этом мы пока закончим четвёртую часть.
  
   В Солнечной системе есть ещё десяток способов получать, почти бесплатно, вещество и энергию почти в неограниченном количестве, за счёт гравитационных манёвров, как с использованием ресурсов внешних тел, так и только за счёт вещества, доставляемого с Земли.
   Например, сходные результаты можно получить, используя систему спутников Сатурна, хотя срок доставки вещества и энергии будет больше.
   Можно также получать луц со скоростным фактором 40-70 км/с, запуская ракеты и всё топливо только с Земли, и затем совершая манёвры в системе Земля-Солнце или Земля-Юпитер-Солнце. Такие схемы можно реализовать без использования высокоимпульсных термо-кинетических двигателей, с помощью обычных ракет на химическом топливе или подогретом водороде, хотя энергетический выход будет скромнее.
  
   Но в следующей части мы рассмотрим способы получения носителей кинетической энергии с большей скоростью, от 500 до тысяч километров в секунду. Нам же надо к звёздам...
  
  
  
   (с) Полюх Алексей Леонидович, 30 апреля 2024 года.
  
  
   ***
   ((для тех, кто сразу испугался и совсем ничего не понял)):
   "луц" - это просто короткое название, (которое мы позаимствовали у Кира Булычёва), и используем в данном тексте как сокращение многобуквенной фразы: "поток носителей кинетической энергии, представляющих собой микро снаряды из льда или иного материала, летящие со скоростью более 20 километров в секунду". (или короче, "высокоскоростные носители кинетической энергии"). Но это долго писать... Луц - это просто и сразу понятно. Это именно то волшебное вещество, которое позволит наконец начать освоение космоса. И в которое жители Плюка переработали океаны своей планеты... ((хотя меня тут же поправят - это вовсе даже никакое не особое вещество, а всего лишь особое состояние обычного вещества, то есть просто состояние движения; не субстанция, стало быть, а акциденция... но я таких тонкостей не различаю, мне бы попроще как-то)).
  
   Читайте вначале 3-ю часть, там описана основная концепция.
  
  
   Обязательно оставьте комментарий, и приведите трёх друзей :)
  
  
  
  
  
  
  
  
  

24

  
  
  
  

 Ваша оценка:

Связаться с программистом сайта.

Новые книги авторов СИ, вышедшие из печати:
О.Болдырева "Крадуш. Чужие души" М.Николаев "Вторжение на Землю"

Как попасть в этoт список
Сайт - "Художники" .. || .. Доска об'явлений "Книги"