Реклама: 


ON THE NATURE OF PHYSICAL VALUES AND PHENOMENA
CONTENTS
On the nature of physical values and phenomena (Part I)
Foreword
Foreword (Part I)
Russian
ON THE NATURE OF PHYSICAL VALUES AND PHENOMENA
1. Hubble's constant. On the nature of physics values and phenomena and systems of their measurement
v = Hr,
H (1,63,2)10^{18} (Hz) .
T = 1/H (36)10^{17} (s)
T (12)10^{10} (years)
X = Tc
X ( 918)10^{25} (m) meters.
H = kdV / dT
H = kV'
H = k(V'TV" ) ,
H = H_{o}  TH'
H = H_{o}  H( T )
H' =  kV"
 kV"
Russian
2. On the nature of mass
m = v"
m = sx"
m = v/^{2}
kg = [K_{m}] (m^{3}/s^{2}),
K_{m} 1/G (1,499)10^{10} (kg^{.}s^{2}/m^{3})
K_{m}= 4/ G.
M = K_{m} (X^{3})"
F = K_{m} (X^{4})"" ([K_{m}]m^{4}/s^{4})
m = x^{2}x_{1}"
f = x^{2} (x_{1}") (x_{2}"),
F = X^{2} (X_{1}") (X_{2}") / G,
dw = w(dv)  w(x") = 0
w(dv) = pdv
pdv = (f/s)dv = [(x^{4})""/s]dv
w(x") = m(x")dx
m(x")dx = v"(x")dx
w(dv)w(x")=[(x4)""/dx2]dvv"x"dx =(x4)""dx (x4)""dx=0
dM = MdX'(2X'_{o}  dX') / (X'_{o}  dX')^{2}
3. On the nature of electrostatic charge
Russian
q = v"
q = sx"
q = v/ ^{2} .
[Q] = C = As = [K_{q}](m^{3}/s^{2})
K_{q} = (4 _{o}/G)^{1/2} 1,29 (As^{3}/m^{3})
Q= K_{q}(V/T^{2}) (C)
F = (1/G)(X^{4})"" (N),
F = K_{q}(G/4)MQ / X^{2} .
f = v"_{m}v"_{q} / x^{2} .
Russian
4. On the nature of magnetic field
= v"
= K_{} V"
b = x"
B = _{} X"
= sx"
= v / t^{2}
'_{lim} = (_{o}/ G)^{1/2}c^{3} = c^{2} ( _{o}G) ^{1/2} .
'_{lim} = c^{2} (_{o} G)^{1/2} ,
'_{lim} 3,6776^{ . }10^{27} (V)
'_{lim} = 1
Russian
5. On the nature of electric current
dF = I^{ . }dX^{ . }B
i = (x^{2})"
i = x^{2} / ^{2}
A = [K_{i}]m^{2} / s^{2}
K_{i} = (2/ _{}_{}_{}_{}_{}_{o}G)^{1/2}
2,73752^{ }^{.}^{ }10^{8} (As^{2}/ m^{2})
I = (2/ _{o}G)^{1/2} (X^{2})"
I_{q} = 2( _{o}/ G)^{1/2}V'''
V''' / (X^{2})" = (2 / _{o}G)^{1/2 . }0,5(_{o}/ G)^{1/2}
X' = (2_{o}_{o})^{1/2}
X' = 0,5^{1/2}c = C (m/s)
I_{lim} = (_{o}/ G) ^{1/2}c^{3}
I_{lim} = ( / _{o}G) ^{1/2}c^{2}
I_{lim} = (_{o}/ G) ^{1/2}c^{3}
I_{lim} = (1 / _{o}G)^{1/2}c^{2}
I_{lim} 9,8154^{ . }10^{24} (ю)
Russian
6. On the nature of voltage
u = s"
u = (x^{2})"
U = K_{u} S"
R = (_{o} / 16^{2}_{o})^{1/2}
U = RI = (_{o} / 16^{2}_{o})^{1/2} (4/ _{o}G)^{1/2}(X^{2})"
U = (4_{o}G)^{1/2}(X^{2})"
U = ' = [(_{o}/ 2G)(X^{3})"]'
U = (4_{o}G)^{1/2}(X^{2})"
U = Q / C = (4_{o} / G)^{1/2}(X^{3})"/ (4_{o})dX = (4_{o}G)^{1/2}(X^{2})"
L = (_{o}/ 16^{2}_{o})^{1/2}dT
U = LdI / dT = (_{o} / 16^{2}_{o})^{1/2} dT^{.}(4 / _{o}G) (X^{2})" / dT = (4_{o}G)^{1/2} (X^{2})" .
U = K_{u}(X^{2})",
U = K_{u} X_{1} X"_{2} .
U = K_{c}M / C
K_{c} = (4_{o}G)^{1/2}
U = (4_{o}G)^{1/2}(1 / G) (X^{3})'' / 4_{o}dX = (4_{o}G)^{1/2}(X^{2})"
(dS = S_{2}  S_{1}):
U = K_{u} S"
U_{lim} = '_{lim}
(See article 4).
Russian
7. On the nature of electric resistance
R = U / I
I = K_{i}(X^{2})" and U = K_{u}S"
R = K_{r}S" / (X^{2})"
K_{r} = K_{u} / K_{i} = (_{o}/ _{o})^{1/2}
R = K_{r}V / X^{3} ,
Russian
8. On the nature of selfinduction's coefficient and electric capacitance
U = LI'
L = U / I'
l = u / i' = udt / di
u / di = r = k
l = kdt = dt
L = K_{l} S" / (X^{2})"
L = (_{o}/ _{o})^{1/2} dT
L = _{o}dX ,
U = Q / C or C = Q / U
c = (x^{3})" / (x^{2})" = kdx
C = K_{c} dX
C = (_{o}/ _{o})^{1/2} dT
dX / dT = 1 / (2_{o}_{o})^{1/2}
c = kdt or
c = dt , that is k = 1
Russian
9. On the nature of interactive forces between bodies and fields
_{4}
F = (1/G) П X^{j})_{n}"^{...i}
^{n =1}
_{4} 
_{4} 
_{4}
F = (1 / G) П (X^{j}_{k})_{n}"^{ ...i}_{m}
^{k, m, n =1}
F = (1 / G) [(X^{b})"^{...a}]^{c} [(X^{k})"^{...d}]^{l} [(X^{n})"^{...m}]^{p} [(X^{w})"^{...v}]^{z} ,
F = (1 / G) [(X^{b})"^{...a}]^{c} [(X^{k})"^{...d}]^{l} X^{m} / X^{n} T^{p}
[F] = [1 / G](m^{4} / s^{4}) .
F = MX"
F = (1 / G) (X^{3})" X"
F = (_{o}/ 2
)^{1/2} I_{1} I_{2} = (_{o}/ 2
) (2
/ _{o}G) (X_{1}^{2})" (X_{2}^{2})"
F = (1 / G) (X_{1}^{2})" (X_{2}^{2})"
F = 2M
X' = 2(1 / G) (X_{1}^{3})" 1' [0,5(2R)' ]
F = (1 / G) (X_{1}^{3})" (X_{2})' / dT .
F = GM_{1}M_{2} / X^{2} = G(1 / G)(X_{1}^{3})" (1 / G)(X_{2}^{3})" / X^{2}
F = (1 / G) (X_{1}^{3})" (X_{2}^{3})" / X^{2} .
F = 4
BФ / _{o}
F = (2
/ _{o}) BФ = (2
/ _{o}) (_{o}/ 2
G) (X_{1}^{3})" (X_{2})"
F = (1 / G) (X_{1}^{3})" (X_{2})" .
F = 2B^{2}S / _{o} ,
F = 2(_{o}/ 2
G) (X_{2})" (X_{2})"
X^{2} / _{o} .
F = (1 / G) [(X_{2})"]^{2} X^{2} .
F = (2 / _{o}) Ф_{1} Ф_{2} / X^{2} = (2 / _{o}) (_{o}/ 2 G) (X_{1}^{3})" (X_{2}^{3})" / X^{2}
F = (1 / G) (X_{1}^{3})" (X_{2}^{3})" / X^{2}
F = IXB = (2 / _{o} G)^{1/2} (_{o}/ 2 G)^{1/2} X (X_{1}^{2})" (X_{2})"
F = (1 / G) X (X_{1}^{2})" (X_{2})"
F = IФ X_{1} / X_{2}^{2} = (2 / _{o}G)^{1/2} (X_{i}^{2})" (_{o}/ 2 G)^{1/2} (X_{ф}^{3})" X_{1} / X_{2}^{2}
F = (1 / G) (X_{i}^{2})" (X_{ф}^{3})" X_{1} / X_{2}^{2}
F = Q X'B
F = (4
_{o} / G)^{1/2} (X_{Т}^{3})" X' (_{o}/ 2 G)^{1/2} (X_{b})"
F = (1 / G)( _{o} _{o})^{1/2} (X_{Т}^{3})" X' (X_{b})"
(_{o} _{o})^{1/2} = 1 / X'_{c}
F = (1 / G) (X_{Т}^{3})" X' (X_{b})" / X'_{c}
F = Q U / X = (4 _{o}/ G)^{1/2} (X_{q}^{3})" (X_{u}^{2})" / X(4 _{o} / G)^{1/2}
F = (1 / G) (X_{q}^{3})" (X_{u}^{2})" / X
F = K U_{1} U_{2} = K (X_{1}^{2})" (X_{2}^{2})" / (4 _{o}/ G)^{1/2} ,
K = 4 _{o} ,
F = (1 / G) (X_{1}^{2})" (X_{2}^{2})"
F = (G / 4 _{o})^{1/2} QM / X^{2}
F = (G / 4 _{o})^{1/2} (4 _{o}/ G)^{1/2} (X_{q}^{3})" (X_{Л}^{3})" / X^{2}
F = (1 / G) (X_{q}^{3})" (X_{Л}^{3})" / X^{2}
F = QKI / X
F = K(4_{o} / G)^{1/2} (X_{q}^{3})" (4 / _{o}G)^{1/2} (X_{i}^{2})" / X
K = (_{o}/ 16^{2} _{o} )^{1/2} = R
F = (1 / G) (X_{q}^{3})" (X_{i}^{2})" / X
F = RIQ / X = UQ / X ,
F = KUI
F = K(4 / _{o}G) (X_{i}^{2})" (X_{u}^{2})" / (4_{o}G)^{1/2}
K = (_{o}_{o})^{1/2}
F = (1 / G) (X_{i}^{2})" (X_{u}^{2})"
F = KMФ / X^{2}
F = (1 / G) (X_{Л}^{3})" (_{o}/ 4G)^{1/2} (X_{Т}^{3})" / X^{2} .
K = (4G / _{o})
F = (1 / G) (X_{Т}^{3})" (X_{Л}^{3})" / X^{2}
F = KФQ / X^{2}
F = K(_{o}/ 4G)^{1/2} (X_{ф}^{3})" (4_{o} / G)^{1/2} (X_{q}^{3})" / X^{2} .
F = (1 / G) (X_{Т}^{3})" (X_{q}^{3})" / X^{2} .
F = KФU / X
F = K(_{o}/ 4G)^{1/2} (X_{Т}^{3})" (X_{u}^{2})" / (4_{o} G)^{1/2} X
K = 4 ( _{o}/ _{o})^{1/2}
F = (1 / G) (X_{ф}^{3})" (X_{u}^{2})" / X
F_{lim} = (1 / G)c^{4} 1,210673^{ . }10^{54} (N)
F_{lim} 3,0266825^{ . }10^{53} (N)
