



ON THE NATURE OF PHYSICAL VALUES AND PHENOMENA
CONTENTS
On the nature of physical values and phenomena (Part I)
Foreword
Foreword (Part I)
Russian
ON THE NATURE OF PHYSICAL VALUES AND PHENOMENA
1. Hubble's constant. On the nature of physics values and phenomena and systems of their measurement
v = Hr,
H (1,63,2)10^{18} (Hz) .
T = 1/H (36)10^{17} (s)
T (12)10^{10} (years)
X = Tc
X ( 918)10^{25} (m) meters.
H = kdV / dT
H = kV'
H = k(V'TV" ) ,
H = H_{o}  TH'
H = H_{o}  H( T )
H' =  kV"
 kV"
Russian
2. On the nature of mass
m = v"
m = sx"
m = v/^{2}
kg = [K_{m}] (m^{3}/s^{2}),
K_{m} 1/G (1,499)10^{10} (kg^{.}s^{2}/m^{3})
K_{m}= 4/ G.
M = K_{m} (X^{3})"
F = K_{m} (X^{4})"" ([K_{m}]m^{4}/s^{4})
m = x^{2}x_{1}"
f = x^{2} (x_{1}") (x_{2}"),
F = X^{2} (X_{1}") (X_{2}") / G,
dw = w(dv)  w(x") = 0
w(dv) = pdv
pdv = (f/s)dv = [(x^{4})""/s]dv
w(x") = m(x")dx
m(x")dx = v"(x")dx
w(dv)w(x")=[(x4)""/dx2]dvv"x"dx =(x4)""dx (x4)""dx=0
dM = MdX'(2X'_{o}  dX') / (X'_{o}  dX')^{2}
3. On the nature of electrostatic charge
Russian
q = v"
q = sx"
q = v/ ^{2} .
[Q] = C = As = [K_{q}](m^{3}/s^{2})
K_{q} = (4 _{o}/G)^{1/2} 1,29 (As^{3}/m^{3})
Q= K_{q}(V/T^{2}) (C)
F = (1/G)(X^{4})"" (N),
F = K_{q}(G/4)MQ / X^{2} .
f = v"_{m}v"_{q} / x^{2} .
Russian
4. On the nature of magnetic field
= v"
= K_{} V"
b = x"
B = _{} X"
= sx"
= v / t^{2}
'_{lim} = (_{o}/ G)^{1/2}c^{3} = c^{2} ( _{o}G) ^{1/2} .
'_{lim} = c^{2} (_{o} G)^{1/2} ,
'_{lim} 3,6776^{ . }10^{27} (V)
'_{lim} = 1
Russian
5. On the nature of electric current
dF = I^{ . }dX^{ . }B
i = (x^{2})"
i = x^{2} / ^{2}
A = [K_{i}]m^{2} / s^{2}
K_{i} = (2/ _{}_{}_{}_{}_{}_{o}G)^{1/2}
2,73752^{ }^{.}^{ }10^{8} (As^{2}/ m^{2})
I = (2/ _{o}G)^{1/2} (X^{2})"
I_{q} = 2( _{o}/ G)^{1/2}V'''
V''' / (X^{2})" = (2 / _{o}G)^{1/2 . }0,5(_{o}/ G)^{1/2}
X' = (2_{o}_{o})^{1/2}
X' = 0,5^{1/2}c = C (m/s)
I_{lim} = (_{o}/ G) ^{1/2}c^{3}
I_{lim} = ( / _{o}G) ^{1/2}c^{2}
I_{lim} = (_{o}/ G) ^{1/2}c^{3}
I_{lim} = (1 / _{o}G)^{1/2}c^{2}
I_{lim} 9,8154^{ . }10^{24} (ю)
Russian
6. On the nature of voltage
u = s"
u = (x^{2})"
U = K_{u} S"
R = (_{o} / 16^{2}_{o})^{1/2}
U = RI = (_{o} / 16^{2}_{o})^{1/2} (4/ _{o}G)^{1/2}(X^{2})"
U = (4_{o}G)^{1/2}(X^{2})"
U = ' = [(_{o}/ 2G)(X^{3})"]'
U = (4_{o}G)^{1/2}(X^{2})"
U = Q / C = (4_{o} / G)^{1/2}(X^{3})"/ (4_{o})dX = (4_{o}G)^{1/2}(X^{2})"
L = (_{o}/ 16^{2}_{o})^{1/2}dT
U = LdI / dT = (_{o} / 16^{2}_{o})^{1/2} dT^{.}(4 / _{o}G) (X^{2})" / dT = (4_{o}G)^{1/2} (X^{2})" .
U = K_{u}(X^{2})",
U = K_{u} X_{1} X"_{2} .
U = K_{c}M / C
K_{c} = (4_{o}G)^{1/2}
U = (4_{o}G)^{1/2}(1 / G) (X^{3})'' / 4_{o}dX = (4_{o}G)^{1/2}(X^{2})"
(dS = S_{2}  S_{1}):
U = K_{u} S"
U_{lim} = '_{lim}
(See article 4).
Russian
7. On the nature of electric resistance
R = U / I
I = K_{i}(X^{2})" and U = K_{u}S"
R = K_{r}S" / (X^{2})"
K_{r} = K_{u} / K_{i} = (_{o}/ _{o})^{1/2}
R = K_{r}V / X^{3} ,
Russian
8. On the nature of selfinduction's coefficient and electric capacitance
U = LI'
L = U / I'
l = u / i' = udt / di
u / di = r = k
l = kdt = dt
L = K_{l} S" / (X^{2})"
L = (_{o}/ _{o})^{1/2} dT
L = _{o}dX ,
U = Q / C or C = Q / U
c = (x^{3})" / (x^{2})" = kdx
C = K_{c} dX
C = (_{o}/ _{o})^{1/2} dT
dX / dT = 1 / (2_{o}_{o})^{1/2}
c = kdt or
c = dt , that is k = 1
Russian
9. On the nature of interactive forces between bodies and fields
_{4}
F = (1/G) П X^{j})_{n}"^{...i}
^{n =1}
_{4} 
_{4} 
_{4}
F = (1 / G) П (X^{j}_{k})_{n}"^{ ...i}_{m}
^{k, m, n =1}
F = (1 / G) [(X^{b})"^{...a}]^{c} [(X^{k})"^{...d}]^{l} [(X^{n})"^{...m}]^{p} [(X^{w})"^{...v}]^{z} ,
F = (1 / G) [(X^{b})"^{...a}]^{c} [(X^{k})"^{...d}]^{l} X^{m} / X^{n} T^{p}
[F] = [1 / G](m^{4} / s^{4}) .
F = MX"
F = (1 / G) (X^{3})" X"
F = (_{o}/ 2
)^{1/2} I_{1} I_{2} = (_{o}/ 2
) (2
/ _{o}G) (X_{1}^{2})" (X_{2}^{2})"
F = (1 / G) (X_{1}^{2})" (X_{2}^{2})"
F = 2M
X' = 2(1 / G) (X_{1}^{3})" 1' [0,5(2R)' ]
F = (1 / G) (X_{1}^{3})" (X_{2})' / dT .
F = GM_{1}M_{2} / X^{2} = G(1 / G)(X_{1}^{3})" (1 / G)(X_{2}^{3})" / X^{2}
F = (1 / G) (X_{1}^{3})" (X_{2}^{3})" / X^{2} .
F = 4
BФ / _{o}
F = (2
/ _{o}) BФ = (2
/ _{o}) (_{o}/ 2
G) (X_{1}^{3})" (X_{2})"
F = (1 / G) (X_{1}^{3})" (X_{2})" .
F = 2B^{2}S / _{o} ,
F = 2(_{o}/ 2
G) (X_{2})" (X_{2})"
X^{2} / _{o} .
F = (1 / G) [(X_{2})"]^{2} X^{2} .
F = (2 / _{o}) Ф_{1} Ф_{2} / X^{2} = (2 / _{o}) (_{o}/ 2 G) (X_{1}^{3})" (X_{2}^{3})" / X^{2}
F = (1 / G) (X_{1}^{3})" (X_{2}^{3})" / X^{2}
F = IXB = (2 / _{o} G)^{1/2} (_{o}/ 2 G)^{1/2} X (X_{1}^{2})" (X_{2})"
F = (1 / G) X (X_{1}^{2})" (X_{2})"
F = IФ X_{1} / X_{2}^{2} = (2 / _{o}G)^{1/2} (X_{i}^{2})" (_{o}/ 2 G)^{1/2} (X_{ф}^{3})" X_{1} / X_{2}^{2}
F = (1 / G) (X_{i}^{2})" (X_{ф}^{3})" X_{1} / X_{2}^{2}
F = Q X'B
F = (4
_{o} / G)^{1/2} (X_{Т}^{3})" X' (_{o}/ 2 G)^{1/2} (X_{b})"
F = (1 / G)( _{o} _{o})^{1/2} (X_{Т}^{3})" X' (X_{b})"
(_{o} _{o})^{1/2} = 1 / X'_{c}
F = (1 / G) (X_{Т}^{3})" X' (X_{b})" / X'_{c}
F = Q U / X = (4 _{o}/ G)^{1/2} (X_{q}^{3})" (X_{u}^{2})" / X(4 _{o} / G)^{1/2}
F = (1 / G) (X_{q}^{3})" (X_{u}^{2})" / X
F = K U_{1} U_{2} = K (X_{1}^{2})" (X_{2}^{2})" / (4 _{o}/ G)^{1/2} ,
K = 4 _{o} ,
F = (1 / G) (X_{1}^{2})" (X_{2}^{2})"
F = (G / 4 _{o})^{1/2} QM / X^{2}
F = (G / 4 _{o})^{1/2} (4 _{o}/ G)^{1/2} (X_{q}^{3})" (X_{Л}^{3})" / X^{2}
F = (1 / G) (X_{q}^{3})" (X_{Л}^{3})" / X^{2}
F = QKI / X
F = K(4_{o} / G)^{1/2} (X_{q}^{3})" (4 / _{o}G)^{1/2} (X_{i}^{2})" / X
K = (_{o}/ 16^{2} _{o} )^{1/2} = R
F = (1 / G) (X_{q}^{3})" (X_{i}^{2})" / X
F = RIQ / X = UQ / X ,
F = KUI
F = K(4 / _{o}G) (X_{i}^{2})" (X_{u}^{2})" / (4_{o}G)^{1/2}
K = (_{o}_{o})^{1/2}
F = (1 / G) (X_{i}^{2})" (X_{u}^{2})"
F = KMФ / X^{2}
F = (1 / G) (X_{Л}^{3})" (_{o}/ 4G)^{1/2} (X_{Т}^{3})" / X^{2} .
K = (4G / _{o})
F = (1 / G) (X_{Т}^{3})" (X_{Л}^{3})" / X^{2}
F = KФQ / X^{2}
F = K(_{o}/ 4G)^{1/2} (X_{ф}^{3})" (4_{o} / G)^{1/2} (X_{q}^{3})" / X^{2} .
F = (1 / G) (X_{Т}^{3})" (X_{q}^{3})" / X^{2} .
F = KФU / X
F = K(_{o}/ 4G)^{1/2} (X_{Т}^{3})" (X_{u}^{2})" / (4_{o} G)^{1/2} X
K = 4 ( _{o}/ _{o})^{1/2}
F = (1 / G) (X_{ф}^{3})" (X_{u}^{2})" / X
F_{lim} = (1 / G)c^{4} 1,210673^{ . }10^{54} (N)
F_{lim} 3,0266825^{ . }10^{53} (N)

Новые книги авторов СИ, вышедшие из печати:
Д.Смекалин "Ловушка архимага"
Е.Шепельский "Варвар,который ошибался"
В.Южная "Холодные звезды"